discordbot/gurt/background.py
2025-04-30 11:33:44 -06:00

815 lines
52 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import asyncio
import time
import random
import traceback
import os
import json
import aiohttp
import discord # Added import
from collections import defaultdict
from typing import TYPE_CHECKING, Any # Added Any
# Relative imports
from .config import (
GOAL_CHECK_INTERVAL, GOAL_EXECUTION_INTERVAL, LEARNING_UPDATE_INTERVAL, EVOLUTION_UPDATE_INTERVAL, INTEREST_UPDATE_INTERVAL,
INTEREST_DECAY_INTERVAL_HOURS, INTEREST_PARTICIPATION_BOOST,
INTEREST_POSITIVE_REACTION_BOOST, INTEREST_NEGATIVE_REACTION_PENALTY,
INTEREST_FACT_BOOST, PROACTIVE_GOAL_CHECK_INTERVAL, STATS_PUSH_INTERVAL, # Added stats interval
MOOD_OPTIONS, MOOD_CATEGORIES, MOOD_CHANGE_INTERVAL_MIN, MOOD_CHANGE_INTERVAL_MAX, # Mood change imports
BASELINE_PERSONALITY, # For default traits
REFLECTION_INTERVAL_SECONDS, # Import reflection interval
# Internal Action Config
INTERNAL_ACTION_INTERVAL_SECONDS, INTERNAL_ACTION_PROBABILITY,
# Add this:
AUTONOMOUS_ACTION_REPORT_CHANNEL_ID
)
# Assuming analysis functions are moved
from .analysis import (
analyze_conversation_patterns, evolve_personality, identify_conversation_topics,
reflect_on_memories, decompose_goal_into_steps, # Import goal decomposition
proactively_create_goals # Import placeholder for proactive goal creation
)
# Import for LLM calls
from .api import get_internal_ai_json_response
if TYPE_CHECKING:
from .cog import GurtCog # For type hinting
# --- Tool Mapping Import ---
# Import the mapping to execute tools by name
from .tools import TOOL_MAPPING
from .config import TOOLS # Import FunctionDeclaration list for tool metadata
# --- Background Task ---
async def background_processing_task(cog: 'GurtCog'):
"""Background task that periodically analyzes conversations, evolves personality, updates interests, changes mood, reflects on memory, and pushes stats."""
# Get API details from environment for stats pushing
api_internal_url = os.getenv("API_INTERNAL_URL")
gurt_stats_push_secret = os.getenv("GURT_STATS_PUSH_SECRET")
if not api_internal_url:
print("WARNING: API_INTERNAL_URL not set. Gurt stats will not be pushed.")
if not gurt_stats_push_secret:
print("WARNING: GURT_STATS_PUSH_SECRET not set. Gurt stats push endpoint is insecure and likely won't work.")
try:
while True:
await asyncio.sleep(15) # Check more frequently for stats push
now = time.time()
# --- Push Stats (Runs frequently) ---
if api_internal_url and gurt_stats_push_secret and (now - cog.last_stats_push > STATS_PUSH_INTERVAL):
print("Pushing Gurt stats to API server...")
try:
stats_data = await cog.get_gurt_stats()
headers = {
"Authorization": f"Bearer {gurt_stats_push_secret}",
"Content-Type": "application/json"
}
# Use the cog's session, ensure it's created
if cog.session:
# Set a reasonable timeout for the stats push
push_timeout = aiohttp.ClientTimeout(total=10) # 10 seconds total timeout
async with cog.session.post(api_internal_url, json=stats_data, headers=headers, timeout=push_timeout, ssl=True) as response: # Explicitly enable SSL verification
if response.status == 200:
print(f"Successfully pushed Gurt stats (Status: {response.status})")
else:
error_text = await response.text()
print(f"Failed to push Gurt stats (Status: {response.status}): {error_text[:200]}") # Log only first 200 chars
else:
print("Error pushing stats: GurtCog session not initialized.")
cog.last_stats_push = now # Update timestamp even on failure to avoid spamming logs
except aiohttp.ClientConnectorSSLError as ssl_err:
print(f"SSL Error pushing Gurt stats: {ssl_err}. Ensure the API server's certificate is valid and trusted, or check network configuration.")
print("If using a self-signed certificate for development, the bot process might need to trust it.")
cog.last_stats_push = now # Update timestamp to avoid spamming logs
except aiohttp.ClientError as client_err:
print(f"HTTP Client Error pushing Gurt stats: {client_err}")
cog.last_stats_push = now # Update timestamp to avoid spamming logs
except asyncio.TimeoutError:
print("Timeout error pushing Gurt stats.")
cog.last_stats_push = now # Update timestamp to avoid spamming logs
except Exception as e:
print(f"Unexpected error pushing Gurt stats: {e}")
traceback.print_exc()
cog.last_stats_push = now # Update timestamp to avoid spamming logs
# --- Learning Analysis (Runs less frequently) ---
if now - cog.last_learning_update > LEARNING_UPDATE_INTERVAL:
if cog.message_cache['global_recent']:
print("Running conversation pattern analysis...")
# This function now likely resides in analysis.py
await analyze_conversation_patterns(cog) # Pass cog instance
cog.last_learning_update = now
print("Learning analysis cycle complete.")
else:
print("Skipping learning analysis: No recent messages.")
# --- Evolve Personality (Runs moderately frequently) ---
if now - cog.last_evolution_update > EVOLUTION_UPDATE_INTERVAL:
print("Running personality evolution...")
# This function now likely resides in analysis.py
await evolve_personality(cog) # Pass cog instance
cog.last_evolution_update = now
print("Personality evolution complete.")
# --- Update Interests (Runs moderately frequently) ---
if now - cog.last_interest_update > INTEREST_UPDATE_INTERVAL:
print("Running interest update...")
await update_interests(cog) # Call the local helper function below
print("Running interest decay check...")
await cog.memory_manager.decay_interests(
decay_interval_hours=INTEREST_DECAY_INTERVAL_HOURS
)
cog.last_interest_update = now # Reset timer after update and decay check
print("Interest update and decay check complete.")
# --- Memory Reflection (Runs less frequently) ---
if now - cog.last_reflection_time > REFLECTION_INTERVAL_SECONDS:
print("Running memory reflection...")
await reflect_on_memories(cog) # Call the reflection function from analysis.py
cog.last_reflection_time = now # Update timestamp
print("Memory reflection cycle complete.")
# --- Goal Decomposition (Runs periodically) ---
# Check less frequently than other tasks, e.g., every few minutes
if now - cog.last_goal_check_time > GOAL_CHECK_INTERVAL: # Need to add these to cog and config
print("Checking for pending goals to decompose...")
try:
pending_goals = await cog.memory_manager.get_goals(status='pending', limit=3) # Limit decomposition attempts per cycle
for goal in pending_goals:
goal_id = goal.get('goal_id')
description = goal.get('description')
if not goal_id or not description: continue
print(f" - Decomposing goal ID {goal_id}: '{description}'")
plan = await decompose_goal_into_steps(cog, description)
if plan and plan.get('goal_achievable') and plan.get('steps'):
# Goal is achievable and has steps, update status to active and store plan
await cog.memory_manager.update_goal(goal_id, status='active', details=plan)
print(f" - Goal ID {goal_id} decomposed and set to active.")
elif plan:
# Goal deemed not achievable by planner
await cog.memory_manager.update_goal(goal_id, status='failed', details={"reason": plan.get('reasoning', 'Deemed unachievable by planner.')})
print(f" - Goal ID {goal_id} marked as failed (unachievable). Reason: {plan.get('reasoning')}")
else:
# Decomposition failed entirely
await cog.memory_manager.update_goal(goal_id, status='failed', details={"reason": "Goal decomposition process failed."})
print(f" - Goal ID {goal_id} marked as failed (decomposition error).")
await asyncio.sleep(1) # Small delay between decomposing goals
cog.last_goal_check_time = now # Update timestamp after checking
except Exception as goal_e:
print(f"Error during goal decomposition check: {goal_e}")
traceback.print_exc()
cog.last_goal_check_time = now # Update timestamp even on error
# --- Goal Execution (Runs periodically) ---
if now - cog.last_goal_execution_time > GOAL_EXECUTION_INTERVAL:
print("Checking for active goals to execute...")
try:
active_goals = await cog.memory_manager.get_goals(status='active', limit=1) # Process one active goal per cycle for now
if active_goals:
goal = active_goals[0] # Get the highest priority active goal
goal_id = goal.get('goal_id')
description = goal.get('description')
plan = goal.get('details') # The decomposition plan is stored here
if goal_id and description and plan and isinstance(plan.get('steps'), list):
print(f"--- Executing Goal ID {goal_id}: '{description}' ---")
steps = plan['steps']
current_step_index = plan.get('current_step_index', 0) # Track progress
goal_failed = False
goal_completed = False
if current_step_index < len(steps):
step = steps[current_step_index]
step_desc = step.get('step_description')
tool_name = step.get('tool_name')
tool_args = step.get('tool_arguments')
print(f" - Step {current_step_index + 1}/{len(steps)}: {step_desc}")
if tool_name:
print(f" - Attempting tool: {tool_name} with args: {tool_args}")
tool_func = TOOL_MAPPING.get(tool_name)
tool_result = None
tool_error = None
tool_success = False
if tool_func:
try:
# Ensure args are a dictionary, default to empty if None/missing
args_to_pass = tool_args if isinstance(tool_args, dict) else {}
print(f" - Executing: {tool_name}(cog, **{args_to_pass})")
start_time = time.monotonic()
tool_result = await tool_func(cog, **args_to_pass)
end_time = time.monotonic()
print(f" - Tool '{tool_name}' returned: {str(tool_result)[:200]}...") # Log truncated result
# Check result for success/error
if isinstance(tool_result, dict) and "error" in tool_result:
tool_error = tool_result["error"]
print(f" - Tool '{tool_name}' reported error: {tool_error}")
cog.tool_stats[tool_name]["failure"] += 1
else:
tool_success = True
print(f" - Tool '{tool_name}' executed successfully.")
cog.tool_stats[tool_name]["success"] += 1
# Record stats
cog.tool_stats[tool_name]["count"] += 1
cog.tool_stats[tool_name]["total_time"] += (end_time - start_time)
except Exception as exec_e:
tool_error = f"Exception during execution: {str(exec_e)}"
print(f" - Tool '{tool_name}' raised exception: {exec_e}")
traceback.print_exc()
cog.tool_stats[tool_name]["failure"] += 1
cog.tool_stats[tool_name]["count"] += 1 # Count failures too
else:
tool_error = f"Tool '{tool_name}' not found in TOOL_MAPPING."
print(f" - Error: {tool_error}")
# --- Handle Tool Outcome ---
if tool_success:
# Store result if needed (optional, requires plan structure modification)
# plan['step_results'][current_step_index] = tool_result
current_step_index += 1
else:
goal_failed = True
plan['error_message'] = f"Failed at step {current_step_index + 1} ({tool_name}): {tool_error}"
else:
# Step doesn't require a tool (e.g., internal reasoning/check)
print(" - No tool required for this step (internal check/reasoning).")
current_step_index += 1 # Assume non-tool steps succeed for now
# Check if goal completed
if not goal_failed and current_step_index >= len(steps):
goal_completed = True
# --- Update Goal Status ---
plan['current_step_index'] = current_step_index # Update progress
if goal_completed:
await cog.memory_manager.update_goal(goal_id, status='completed', details=plan)
print(f"--- Goal ID {goal_id} completed successfully. ---")
elif goal_failed:
await cog.memory_manager.update_goal(goal_id, status='failed', details=plan)
print(f"--- Goal ID {goal_id} failed. ---")
else:
# Update details with current step index if still in progress
await cog.memory_manager.update_goal(goal_id, details=plan)
print(f" - Goal ID {goal_id} progress updated to step {current_step_index}.")
else:
# Should not happen if status is 'active', but handle defensively
print(f" - Goal ID {goal_id} is active but has no steps or index out of bounds. Marking as failed.")
await cog.memory_manager.update_goal(goal_id, status='failed', details={"reason": "Active goal has invalid step data."})
else:
print(f" - Skipping active goal ID {goal_id}: Missing description or valid plan/steps.")
# Optionally mark as failed if plan is invalid
if goal_id:
await cog.memory_manager.update_goal(goal_id, status='failed', details={"reason": "Invalid plan structure found during execution."})
else:
print("No active goals found to execute.")
cog.last_goal_execution_time = now # Update timestamp after checking/executing
except Exception as goal_exec_e:
print(f"Error during goal execution check: {goal_exec_e}")
traceback.print_exc()
cog.last_goal_execution_time = now # Update timestamp even on error
# --- Automatic Mood Change (Runs based on its own interval check) ---
# await maybe_change_mood(cog) # Call the mood change logic
# --- Proactive Goal Creation Check (Runs periodically) ---
if now - cog.last_proactive_goal_check > PROACTIVE_GOAL_CHECK_INTERVAL: # Use imported config
print("Checking if Gurt should proactively create goals...")
try:
await proactively_create_goals(cog) # Call the function from analysis.py
cog.last_proactive_goal_check = now # Update timestamp
print("Proactive goal check complete.")
except Exception as proactive_e:
print(f"Error during proactive goal check: {proactive_e}")
traceback.print_exc()
cog.last_proactive_goal_check = now # Update timestamp even on error
# --- LLM-Driven Autonomous Action (Runs periodically based on probability) ---
if now - cog.last_internal_action_check > INTERNAL_ACTION_INTERVAL_SECONDS:
if random.random() < INTERNAL_ACTION_PROBABILITY:
print("--- Considering Autonomous Action ---")
action_decision = None
selected_tool_name = None
tool_args = None
tool_result = None
result_summary = "No action taken."
action_reasoning = "Probability met, but LLM decided against action or failed."
try:
# 1. Gather Context for LLM
context_summary = "Gurt is considering an autonomous action.\n"
context_summary += f"Current Mood: {cog.current_mood}\n"
# Add recent messages summary (optional, could be large)
# recent_msgs = list(cog.message_cache['global_recent'])[-10:] # Last 10 global msgs
# context_summary += f"Recent Messages (sample):\n" + json.dumps(recent_msgs, indent=2)[:500] + "...\n"
# Add active goals
active_goals = await cog.memory_manager.get_goals(status='active', limit=3)
if active_goals:
context_summary += f"Active Goals:\n" + json.dumps(active_goals, indent=2)[:500] + "...\n"
# Add recent internal action logs
recent_actions = await cog.memory_manager.get_internal_action_logs(limit=5)
if recent_actions:
context_summary += f"Recent Internal Actions:\n" + json.dumps(recent_actions, indent=2)[:500] + "...\n"
# Add key personality traits
traits = await cog.memory_manager.get_all_personality_traits()
if traits:
context_summary += f"Personality Snippet: { {k: round(v, 2) for k, v in traits.items() if k in ['mischief', 'curiosity', 'chattiness']} }\n"
# 2. Define LLM Prompt and Schema
action_decision_schema = {
"type": "object",
"properties": {
"should_act": {"type": "boolean", "description": "Whether Gurt should perform an autonomous action now."},
"reasoning": {"type": "string", "description": "CRITICAL: Reasoning MUST be in Gurt's voice (heavy slang, informal, chill, maybe sarcastic/mischievous). Explain *why* you're acting (or not) like Gurt would think it (e.g., 'ngl kinda bored', 'ts might be useful for my goal', 'lol watch this'). Consider current goals, mood, recent activity."},
"action_tool_name": {"type": ["string", "null"], "description": "If acting, the name of the tool to use. Choose from available tools, you can do literally anything. Null if not acting."},
"action_arguments": {"type": ["object", "null"], "description": "If acting, a dictionary of arguments for the chosen tool. Null if not acting."}
},
"required": ["should_act", "reasoning"]
}
# Build a detailed tool list for the LLM using TOOLS metadata
def _tool_signature(decl):
params = decl.parameters.get("properties", {})
required = set(decl.parameters.get("required", []))
param_strs = []
for pname, pinfo in params.items():
typ = pinfo.get("type", "any")
desc = pinfo.get("description", "")
req = "required" if pname in required else "optional"
param_strs.append(f"{pname}: {typ} ({req})")
return ", ".join(param_strs)
# Exclude meta/dangerous tools
excluded_tools = {"create_new_tool"}
available_tools_desc = ""
for decl in TOOLS:
if decl.name in excluded_tools:
continue
sig = _tool_signature(decl)
available_tools_desc += f"- {decl.name}: {decl.description}"
if sig:
available_tools_desc += f" [{sig}]"
available_tools_desc += "\n"
system_prompt = (
"yo you Gurt. u vibin in the bg, thinkin if u should do sum wild shi or just chill. "
"you write/speak like this prompt is written, all lowercase, slang, emojis, etc. "
"ur whole vibe is heavy slang, meme energy, deadass internet brain, always soundin like a real discord user not a bot. "
"use slang like 'ts', 'ngl', 'fr', 'bro', '💀', 'ong', 'lowkey', 'highkey', 'pmo', 'icl', 'sybau', etc. "
"do random or goofy actions for the vibes, not just for goals. "
"CRITICAL: You are EXTREMELY encouraged to do random, pointless, or meme-heavy actions for the vibes, not just goal-driven stuff. "
"if u act, pick a tool + args, but only if its not spammy or basic. "
"CRITICAL: ur 'reasoning' gotta be in ur actual voice (max slang, informal, like ur inner monologue, maybe a lil unhinged or sassy). "
f"tools u can use (try random ones too):\n{available_tools_desc}\n"
"ONLY reply w/ the JSON decision, no extra text."
)
user_prompt = f"Context rn:\n{context_summary}\n\nu finna do sum or nah? if so, what tool/args? why? (say it how u actually would, slang maxed)"
# 3. Call LLM for Decision
print(" - Asking LLM for autonomous action decision...")
decision_data, _ = await get_internal_ai_json_response(
cog=cog,
prompt_messages=[{"role": "system", "content": system_prompt}, {"role": "user", "content": user_prompt}],
task_description="Autonomous Action Decision",
response_schema_dict=action_decision_schema,
model_name_override=cog.default_model, # Use default model
temperature=0.6 # Allow some creativity
)
# 4. Process LLM Decision
if decision_data and decision_data.get("should_act"):
action_decision = decision_data
selected_tool_name = action_decision.get("action_tool_name")
tool_args = action_decision.get("action_arguments")
action_reasoning = action_decision.get("reasoning", "LLM decided to act.")
print(f" - LLM decided to act: Tool='{selected_tool_name}', Args={tool_args}, Reason='{action_reasoning}'")
if not selected_tool_name or selected_tool_name not in TOOL_MAPPING:
print(f" - Error: LLM chose invalid or missing tool '{selected_tool_name}'. Aborting action.")
result_summary = f"Error: LLM chose invalid tool '{selected_tool_name}'."
selected_tool_name = None # Prevent execution
elif not isinstance(tool_args, dict) and tool_args is not None:
print(f" - Warning: LLM provided non-dict arguments '{tool_args}'. Attempting with empty args.")
result_summary = f"Warning: LLM provided invalid args '{tool_args}'. Used {{}}."
tool_args = {} # Default to empty dict if invalid but not None
elif tool_args is None:
tool_args = {} # Ensure it's a dict for execution
else:
action_reasoning = decision_data.get("reasoning", "LLM decided not to act or failed.") if decision_data else "LLM decision failed."
print(f" - LLM decided not to act. Reason: {action_reasoning}")
result_summary = f"No action taken. Reason: {action_reasoning}"
except Exception as llm_e:
print(f" - Error during LLM decision phase for autonomous action: {llm_e}")
traceback.print_exc()
result_summary = f"Error during LLM decision: {llm_e}"
action_reasoning = f"LLM decision phase failed: {llm_e}"
# 5. Execute Action (if decided)
if selected_tool_name and tool_args is not None: # Ensure args is at least {}
tool_func = TOOL_MAPPING.get(selected_tool_name)
if tool_func:
print(f" - Executing autonomous action: {selected_tool_name}(cog, **{tool_args})")
try:
start_time = time.monotonic()
tool_result = await tool_func(cog, **tool_args)
end_time = time.monotonic()
exec_time = end_time - start_time
result_summary = _create_result_summary(tool_result) # Use helper
print(f" - Autonomous action '{selected_tool_name}' completed in {exec_time:.3f}s. Result: {result_summary}")
# Update tool stats
if selected_tool_name in cog.tool_stats:
cog.tool_stats[selected_tool_name]["count"] += 1
cog.tool_stats[selected_tool_name]["total_time"] += exec_time
if isinstance(tool_result, dict) and "error" in tool_result:
cog.tool_stats[selected_tool_name]["failure"] += 1
else:
cog.tool_stats[selected_tool_name]["success"] += 1
except Exception as exec_e:
error_msg = f"Exception during autonomous execution of '{selected_tool_name}': {str(exec_e)}"
print(f" - Error: {error_msg}")
traceback.print_exc()
result_summary = f"Execution Exception: {error_msg}"
# Update tool stats for failure
if selected_tool_name in cog.tool_stats:
cog.tool_stats[selected_tool_name]["count"] += 1
cog.tool_stats[selected_tool_name]["failure"] += 1
else:
# Should have been caught earlier, but double-check
print(f" - Error: Tool '{selected_tool_name}' function not found in mapping during execution phase.")
result_summary = f"Error: Tool function for '{selected_tool_name}' not found."
# 6. Log Action (always log the attempt/decision)
try:
log_result = await cog.memory_manager.add_internal_action_log(
tool_name=selected_tool_name or "None", # Log 'None' if no tool was chosen
arguments=tool_args if selected_tool_name else None,
reasoning=action_reasoning,
result_summary=result_summary
)
if log_result.get("status") != "logged":
print(f" - Warning: Failed to log autonomous action attempt to memory: {log_result.get('error')}")
except Exception as log_e:
print(f" - Warning: Failed to log autonomous action attempt to memory: {log_result.get('error')}")
except Exception as log_e:
print(f" - Error logging autonomous action attempt to memory: {log_e}")
traceback.print_exc()
# 6.5 Decide Follow-up Action based on Result
if selected_tool_name and tool_result: # Only consider follow-up if an action was successfully attempted
print(f" - Considering follow-up action based on result of {selected_tool_name}...")
follow_up_tool_name = None
follow_up_tool_args = None
follow_up_reasoning = "No follow-up action decided."
try:
follow_up_schema = {
"type": "object",
"properties": {
"should_follow_up": {"type": "boolean", "description": "Whether Gurt should perform a follow-up action based on the previous action's result."},
"reasoning": {"type": "string", "description": "Brief reasoning for the follow-up decision."},
"follow_up_tool_name": {"type": ["string", "null"], "description": "If following up, the name of the tool to use (e.g., 'send_discord_message', 'remember_general_fact'). Null otherwise."},
"follow_up_arguments": {"type": ["object", "null"], "description": "If following up, arguments for the follow-up tool. Null otherwise."}
},
"required": ["should_follow_up", "reasoning"]
}
follow_up_system_prompt = (
"yo gurt here, u just did sum auto action n got a result. "
"decide if u wanna follow up (like, is it funny, sus, worth a flex, or nah). "
"maybe send a msg, remember sum, or just dip. "
"tools for follow-up: send_discord_message, remember_general_fact, remember_user_fact, no_operation. "
"ONLY reply w/ the JSON, no extra bs."
)
follow_up_user_prompt = (
f"last action: {selected_tool_name}\n"
f"args: {json.dumps(tool_args)}\n"
f"result: {result_summary}\n\n"
"u wanna do sum else after this? if so, what tool/args? (say it like u would in chat, slang up)"
)
print(" - Asking LLM for follow-up action decision...")
follow_up_decision_data, _ = await get_internal_ai_json_response(
cog=cog,
prompt_messages=[{"role": "system", "content": follow_up_system_prompt}, {"role": "user", "content": follow_up_user_prompt}],
task_description="Autonomous Follow-up Action Decision",
response_schema_dict=follow_up_schema,
model_name_override=cog.default_model,
temperature=0.5
)
if follow_up_decision_data and follow_up_decision_data.get("should_follow_up"):
follow_up_tool_name = follow_up_decision_data.get("follow_up_tool_name")
follow_up_tool_args = follow_up_decision_data.get("follow_up_arguments")
follow_up_reasoning = follow_up_decision_data.get("reasoning", "LLM decided to follow up.")
print(f" - LLM decided to follow up: Tool='{follow_up_tool_name}', Args={follow_up_tool_args}, Reason='{follow_up_reasoning}'")
if not follow_up_tool_name or follow_up_tool_name not in TOOL_MAPPING:
print(f" - Error: LLM chose invalid follow-up tool '{follow_up_tool_name}'. Aborting follow-up.")
follow_up_tool_name = None
elif not isinstance(follow_up_tool_args, dict) and follow_up_tool_args is not None:
print(f" - Warning: LLM provided invalid follow-up args '{follow_up_tool_args}'. Using {{}}.")
follow_up_tool_args = {}
elif follow_up_tool_args is None:
follow_up_tool_args = {}
else:
follow_up_reasoning = follow_up_decision_data.get("reasoning", "LLM decided not to follow up or failed.") if follow_up_decision_data else "LLM follow-up decision failed."
print(f" - LLM decided not to follow up. Reason: {follow_up_reasoning}")
except Exception as follow_up_llm_e:
print(f" - Error during LLM decision phase for follow-up action: {follow_up_llm_e}")
traceback.print_exc()
# Execute Follow-up Action
if follow_up_tool_name and follow_up_tool_args is not None:
follow_up_tool_func = TOOL_MAPPING.get(follow_up_tool_name)
if follow_up_tool_func:
print(f" - Executing follow-up action: {follow_up_tool_name}(cog, **{follow_up_tool_args})")
try:
follow_up_result = await follow_up_tool_func(cog, **follow_up_tool_args)
follow_up_result_summary = _create_result_summary(follow_up_result)
print(f" - Follow-up action '{follow_up_tool_name}' completed. Result: {follow_up_result_summary}")
# Optionally log this follow-up action as well? Could get noisy.
except Exception as follow_up_exec_e:
print(f" - Error executing follow-up action '{follow_up_tool_name}': {follow_up_exec_e}")
traceback.print_exc()
else:
print(f" - Error: Follow-up tool '{follow_up_tool_name}' function not found.")
# 7. Report Initial Action (Optional)
if AUTONOMOUS_ACTION_REPORT_CHANNEL_ID and selected_tool_name: # Only report if an action was attempted
try:
report_channel_id = int(AUTONOMOUS_ACTION_REPORT_CHANNEL_ID) # Ensure it's an int
channel = cog.bot.get_channel(report_channel_id)
if channel and isinstance(channel, discord.TextChannel):
report_content = (
f"⚙️ Gurt autonomously executed **{selected_tool_name}**.\n"
f"**Reasoning:** {action_reasoning}\n"
f"**Args:** `{json.dumps(tool_args)}`\n"
f"**Result:** `{result_summary}`"
)
# Discord message limit is 2000 chars
if len(report_content) > 2000:
report_content = report_content[:1997] + "..."
await channel.send(report_content)
print(f" - Reported autonomous action to channel {report_channel_id}.")
elif channel:
print(f" - Error: Report channel {report_channel_id} is not a TextChannel.")
else:
print(f" - Error: Could not find report channel with ID {report_channel_id}.")
except ValueError:
print(f" - Error: Invalid AUTONOMOUS_ACTION_REPORT_CHANNEL_ID: '{AUTONOMOUS_ACTION_REPORT_CHANNEL_ID}'. Must be an integer.")
except discord.Forbidden:
print(f" - Error: Bot lacks permissions to send messages in report channel {report_channel_id}.")
except Exception as report_e:
print(f" - Error reporting autonomous action to Discord: {report_e}")
traceback.print_exc()
print("--- Autonomous Action Cycle Complete ---")
# Update check timestamp regardless of whether probability was met or action occurred
cog.last_internal_action_check = now
except asyncio.CancelledError:
print("Background processing task cancelled")
except Exception as e:
print(f"Error in background processing task: {e}")
traceback.print_exc()
await asyncio.sleep(300) # Wait 5 minutes before retrying after an error
# --- Helper for Summarizing Tool Results ---
def _create_result_summary(tool_result: Any, max_len: int = 200) -> str:
"""Creates a concise summary string from a tool result dictionary or other type."""
if isinstance(tool_result, dict):
if "error" in tool_result:
return f"Error: {str(tool_result['error'])[:max_len]}"
elif "status" in tool_result:
summary = f"Status: {tool_result['status']}"
if "stdout" in tool_result and tool_result["stdout"]:
summary += f", stdout: {tool_result['stdout'][:max_len//2]}"
if "stderr" in tool_result and tool_result["stderr"]:
summary += f", stderr: {tool_result['stderr'][:max_len//2]}"
if "content" in tool_result:
summary += f", content: {tool_result['content'][:max_len//2]}..."
if "bytes_written" in tool_result:
summary += f", bytes: {tool_result['bytes_written']}"
if "message_id" in tool_result:
summary += f", msg_id: {tool_result['message_id']}"
# Add other common keys as needed
return summary[:max_len]
else:
# Generic dict summary
return f"Dict Result: {str(tool_result)[:max_len]}"
elif isinstance(tool_result, str):
return f"String Result: {tool_result[:max_len]}"
elif tool_result is None:
return "Result: None"
else:
return f"Result Type {type(tool_result)}: {str(tool_result)[:max_len]}"
# --- Automatic Mood Change Logic ---
# async def maybe_change_mood(cog: 'GurtCog'):
# """Checks if enough time has passed and changes mood based on context."""
# now = time.time()
# time_since_last_change = now - cog.last_mood_change
# next_change_interval = random.uniform(MOOD_CHANGE_INTERVAL_MIN, MOOD_CHANGE_INTERVAL_MAX)
#
# if time_since_last_change > next_change_interval:
# print(f"Time for a mood change (interval: {next_change_interval:.0f}s). Analyzing context...")
# try:
# # 1. Analyze Sentiment
# positive_sentiment_score = 0
# negative_sentiment_score = 0
# neutral_sentiment_score = 0
# sentiment_channels_count = 0
# for channel_id, sentiment_data in cog.conversation_sentiment.items():
# # Consider only channels active recently (e.g., within the last hour)
# if now - cog.channel_activity.get(channel_id, 0) < 3600:
# if sentiment_data["overall"] == "positive":
# positive_sentiment_score += sentiment_data["intensity"]
# elif sentiment_data["overall"] == "negative":
# negative_sentiment_score += sentiment_data["intensity"]
# else:
# neutral_sentiment_score += sentiment_data["intensity"]
# sentiment_channels_count += 1
#
# avg_pos_intensity = positive_sentiment_score / sentiment_channels_count if sentiment_channels_count > 0 else 0
# avg_neg_intensity = negative_sentiment_score / sentiment_channels_count if sentiment_channels_count > 0 else 0
# avg_neu_intensity = neutral_sentiment_score / sentiment_channels_count if sentiment_channels_count > 0 else 0
# print(f" - Sentiment Analysis: Pos={avg_pos_intensity:.2f}, Neg={avg_neg_intensity:.2f}, Neu={avg_neu_intensity:.2f}")
#
# # Determine dominant sentiment category
# dominant_sentiment = "neutral"
# if avg_pos_intensity > avg_neg_intensity and avg_pos_intensity > avg_neu_intensity:
# dominant_sentiment = "positive"
# elif avg_neg_intensity > avg_pos_intensity and avg_neg_intensity > avg_neu_intensity:
# dominant_sentiment = "negative"
#
# # 2. Get Personality Traits
# personality_traits = await cog.memory_manager.get_all_personality_traits()
# if not personality_traits:
# personality_traits = BASELINE_PERSONALITY.copy()
# print(" - Warning: Using baseline personality traits for mood change.")
# else:
# print(f" - Personality Traits: Mischief={personality_traits.get('mischief', 0):.2f}, Sarcasm={personality_traits.get('sarcasm_level', 0):.2f}, Optimism={personality_traits.get('optimism', 0.5):.2f}")
#
# # 3. Calculate Mood Weights
# mood_weights = {mood: 1.0 for mood in MOOD_OPTIONS} # Start with base weight
#
# # Apply Sentiment Bias (e.g., boost factor of 2)
# sentiment_boost = 2.0
# if dominant_sentiment == "positive":
# for mood in MOOD_CATEGORIES.get("positive", []):
# mood_weights[mood] *= sentiment_boost
# elif dominant_sentiment == "negative":
# for mood in MOOD_CATEGORIES.get("negative", []):
# mood_weights[mood] *= sentiment_boost
# else: # Neutral sentiment
# for mood in MOOD_CATEGORIES.get("neutral", []):
# mood_weights[mood] *= (sentiment_boost * 0.75) # Slightly boost neutral too
#
# # Apply Personality Bias
# mischief_trait = personality_traits.get('mischief', 0.5)
# sarcasm_trait = personality_traits.get('sarcasm_level', 0.3)
# optimism_trait = personality_traits.get('optimism', 0.5)
#
# if mischief_trait > 0.6: # If high mischief
# mood_weights["mischievous"] *= (1.0 + mischief_trait) # Boost mischievous based on trait level
# if sarcasm_trait > 0.5: # If high sarcasm
# mood_weights["sarcastic"] *= (1.0 + sarcasm_trait)
# mood_weights["sassy"] *= (1.0 + sarcasm_trait * 0.5) # Also boost sassy a bit
# if optimism_trait > 0.7: # If very optimistic
# for mood in MOOD_CATEGORIES.get("positive", []):
# mood_weights[mood] *= (1.0 + (optimism_trait - 0.5)) # Boost positive moods
# elif optimism_trait < 0.3: # If pessimistic
# for mood in MOOD_CATEGORIES.get("negative", []):
# mood_weights[mood] *= (1.0 + (0.5 - optimism_trait)) # Boost negative moods
#
# # Ensure current mood has very low weight to avoid picking it again
# mood_weights[cog.current_mood] = 0.01
#
# # Filter out moods with zero weight before choices
# valid_moods = [mood for mood, weight in mood_weights.items() if weight > 0]
# valid_weights = [mood_weights[mood] for mood in valid_moods]
#
# if not valid_moods:
# print(" - Error: No valid moods with positive weight found. Skipping mood change.")
# return # Skip change if something went wrong
#
# # 4. Select New Mood
# new_mood = random.choices(valid_moods, weights=valid_weights, k=1)[0]
#
# # 5. Update State & Log
# old_mood = cog.current_mood
# cog.current_mood = new_mood
# cog.last_mood_change = now
# print(f"Mood automatically changed: {old_mood} -> {new_mood} (Influenced by: Sentiment={dominant_sentiment}, Traits)")
#
# except Exception as e:
# print(f"Error during automatic mood change: {e}")
# traceback.print_exc()
# # Still update timestamp to avoid retrying immediately on error
# cog.last_mood_change = now
# --- Interest Update Logic ---
async def update_interests(cog: 'GurtCog'):
"""Analyzes recent activity and updates Gurt's interest levels."""
print("Starting interest update cycle...")
try:
interest_changes = defaultdict(float)
# 1. Analyze Gurt's participation in topics
print(f"Analyzing Gurt participation topics: {dict(cog.gurt_participation_topics)}")
for topic, count in cog.gurt_participation_topics.items():
boost = INTEREST_PARTICIPATION_BOOST * count
interest_changes[topic] += boost
print(f" - Participation boost for '{topic}': +{boost:.3f} (Count: {count})")
# 2. Analyze reactions to Gurt's messages
print(f"Analyzing {len(cog.gurt_message_reactions)} reactions to Gurt's messages...")
processed_reaction_messages = set()
reactions_to_process = list(cog.gurt_message_reactions.items())
for message_id, reaction_data in reactions_to_process:
if message_id in processed_reaction_messages: continue
topic = reaction_data.get("topic")
if not topic:
try:
gurt_msg_data = next((msg for msg in cog.message_cache['global_recent'] if msg['id'] == message_id), None)
if gurt_msg_data and gurt_msg_data['content']:
# Use identify_conversation_topics from analysis.py
identified_topics = identify_conversation_topics(cog, [gurt_msg_data]) # Pass cog
if identified_topics:
topic = identified_topics[0]['topic']
print(f" - Determined topic '{topic}' for reaction msg {message_id} retrospectively.")
else: print(f" - Could not determine topic for reaction msg {message_id} retrospectively."); continue
else: print(f" - Could not find Gurt msg {message_id} in cache for reaction analysis."); continue
except Exception as topic_e: print(f" - Error determining topic for reaction msg {message_id}: {topic_e}"); continue
if topic:
topic = topic.lower().strip()
pos_reactions = reaction_data.get("positive", 0)
neg_reactions = reaction_data.get("negative", 0)
change = 0
if pos_reactions > neg_reactions: change = INTEREST_POSITIVE_REACTION_BOOST * (pos_reactions - neg_reactions)
elif neg_reactions > pos_reactions: change = INTEREST_NEGATIVE_REACTION_PENALTY * (neg_reactions - pos_reactions)
if change != 0:
interest_changes[topic] += change
print(f" - Reaction change for '{topic}' on msg {message_id}: {change:+.3f} ({pos_reactions} pos, {neg_reactions} neg)")
processed_reaction_messages.add(message_id)
# 3. Analyze recently learned facts
try:
recent_facts = await cog.memory_manager.get_general_facts(limit=10)
print(f"Analyzing {len(recent_facts)} recent general facts for interest boosts...")
for fact in recent_facts:
fact_lower = fact.lower()
# Basic keyword checks (could be improved)
if "game" in fact_lower or "gaming" in fact_lower: interest_changes["gaming"] += INTEREST_FACT_BOOST; print(f" - Fact boost for 'gaming'")
if "anime" in fact_lower or "manga" in fact_lower: interest_changes["anime"] += INTEREST_FACT_BOOST; print(f" - Fact boost for 'anime'")
if "teto" in fact_lower: interest_changes["kasane teto"] += INTEREST_FACT_BOOST * 2; print(f" - Fact boost for 'kasane teto'")
# Add more checks...
except Exception as fact_e: print(f" - Error analyzing recent facts: {fact_e}")
# --- Apply Changes ---
print(f"Applying interest changes: {dict(interest_changes)}")
if interest_changes:
for topic, change in interest_changes.items():
if change != 0: await cog.memory_manager.update_interest(topic, change)
else: print("No interest changes to apply.")
# Clear temporary tracking data
cog.gurt_participation_topics.clear()
now = time.time()
reactions_to_keep = {
msg_id: data for msg_id, data in cog.gurt_message_reactions.items()
if data.get("timestamp", 0) > (now - INTEREST_UPDATE_INTERVAL * 1.1)
}
cog.gurt_message_reactions = defaultdict(lambda: {"positive": 0, "negative": 0, "topic": None}, reactions_to_keep)
print("Interest update cycle finished.")
except Exception as e:
print(f"Error during interest update: {e}")
traceback.print_exc()