95 lines
3.7 KiB
Python
95 lines
3.7 KiB
Python
import copy
|
|
import json
|
|
from typing import Dict, Any
|
|
|
|
|
|
# --- Schema Preprocessing Helper ---
|
|
# Copied from discordbot/gurt/api.py
|
|
def _preprocess_schema_for_vertex(schema: Dict[str, Any]) -> Dict[str, Any]:
|
|
"""
|
|
Recursively preprocesses a JSON schema dictionary to replace list types
|
|
(like ["string", "null"]) with the first non-null type, making it
|
|
compatible with Vertex AI's GenerationConfig schema requirements.
|
|
|
|
Args:
|
|
schema: The JSON schema dictionary to preprocess.
|
|
|
|
Returns:
|
|
A new, preprocessed schema dictionary.
|
|
"""
|
|
if not isinstance(schema, dict):
|
|
return schema # Return non-dict elements as is
|
|
|
|
processed_schema = copy.deepcopy(schema) # Work on a copy
|
|
|
|
for key, value in processed_schema.items():
|
|
if key == "type" and isinstance(value, list):
|
|
# Find the first non-"null" type in the list
|
|
first_valid_type = next(
|
|
(t for t in value if isinstance(t, str) and t.lower() != "null"), None
|
|
)
|
|
if first_valid_type:
|
|
processed_schema[key] = first_valid_type
|
|
else:
|
|
# Fallback if only "null" or invalid types are present (shouldn't happen in valid schemas)
|
|
processed_schema[key] = "object" # Or handle as error
|
|
print(
|
|
f"Warning: Schema preprocessing found list type '{value}' with no valid non-null string type. Falling back to 'object'."
|
|
)
|
|
elif isinstance(value, dict):
|
|
processed_schema[key] = _preprocess_schema_for_vertex(
|
|
value
|
|
) # Recurse for nested objects
|
|
elif isinstance(value, list):
|
|
# Recurse for items within arrays (e.g., in 'properties' of array items)
|
|
processed_schema[key] = [
|
|
_preprocess_schema_for_vertex(item) if isinstance(item, dict) else item
|
|
for item in value
|
|
]
|
|
# Handle 'properties' specifically
|
|
elif key == "properties" and isinstance(value, dict):
|
|
processed_schema[key] = {
|
|
prop_key: _preprocess_schema_for_vertex(prop_value)
|
|
for prop_key, prop_value in value.items()
|
|
}
|
|
# Handle 'items' specifically if it's a schema object
|
|
elif key == "items" and isinstance(value, dict):
|
|
processed_schema[key] = _preprocess_schema_for_vertex(value)
|
|
|
|
return processed_schema
|
|
|
|
|
|
# --- Response Schema ---
|
|
# Copied from discordbot/gurt/config.py
|
|
RESPONSE_SCHEMA = {
|
|
"name": "gurt_response",
|
|
"description": "The structured response from Gurt.",
|
|
"schema": {
|
|
"type": "object",
|
|
"properties": {
|
|
"should_respond": {
|
|
"type": "boolean",
|
|
"description": "Whether the bot should send a text message in response.",
|
|
},
|
|
"content": {
|
|
"type": "string",
|
|
"description": "The text content of the bot's response. Can be empty if only reacting.",
|
|
},
|
|
"react_with_emoji": {
|
|
"type": ["string", "null"],
|
|
"description": "Optional: A standard Discord emoji to react with, or null/empty if no reaction.",
|
|
},
|
|
"reply_to_message_id": {
|
|
"type": ["string", "null"],
|
|
"description": "Optional: The ID of the message this response should reply to. Null or omit for a regular message.",
|
|
},
|
|
# Note: tool_requests is handled by Vertex AI's function calling mechanism
|
|
},
|
|
"required": ["should_respond", "content"],
|
|
},
|
|
}
|
|
|
|
if __name__ == "__main__":
|
|
processed = _preprocess_schema_for_vertex(RESPONSE_SCHEMA["schema"])
|
|
print(json.dumps(processed, indent=2))
|