discordbot/gurt/background.py
2025-04-29 12:19:32 -06:00

707 lines
44 KiB
Python

import asyncio
import time
import random
import traceback
import os
import json
import aiohttp
from collections import defaultdict
from typing import TYPE_CHECKING, Any # Added Any
# Relative imports
from .config import (
GOAL_CHECK_INTERVAL, GOAL_EXECUTION_INTERVAL, LEARNING_UPDATE_INTERVAL, EVOLUTION_UPDATE_INTERVAL, INTEREST_UPDATE_INTERVAL,
INTEREST_DECAY_INTERVAL_HOURS, INTEREST_PARTICIPATION_BOOST,
INTEREST_POSITIVE_REACTION_BOOST, INTEREST_NEGATIVE_REACTION_PENALTY,
INTEREST_FACT_BOOST, PROACTIVE_GOAL_CHECK_INTERVAL, STATS_PUSH_INTERVAL, # Added stats interval
MOOD_OPTIONS, MOOD_CATEGORIES, MOOD_CHANGE_INTERVAL_MIN, MOOD_CHANGE_INTERVAL_MAX, # Mood change imports
BASELINE_PERSONALITY, # For default traits
REFLECTION_INTERVAL_SECONDS, # Import reflection interval
# Internal Action Config
INTERNAL_ACTION_INTERVAL_SECONDS, INTERNAL_ACTION_PROBABILITY,
# Add this:
AUTONOMOUS_ACTION_REPORT_CHANNEL_ID
)
# Assuming analysis functions are moved
from .analysis import (
analyze_conversation_patterns, evolve_personality, identify_conversation_topics,
reflect_on_memories, decompose_goal_into_steps, # Import goal decomposition
proactively_create_goals # Import placeholder for proactive goal creation
)
# Import for LLM calls
from .api import get_internal_ai_json_response
if TYPE_CHECKING:
from .cog import GurtCog # For type hinting
# --- Tool Mapping Import ---
# Import the mapping to execute tools by name
from .tools import TOOL_MAPPING
# --- Background Task ---
async def background_processing_task(cog: 'GurtCog'):
"""Background task that periodically analyzes conversations, evolves personality, updates interests, changes mood, reflects on memory, and pushes stats."""
# Get API details from environment for stats pushing
api_internal_url = os.getenv("API_INTERNAL_URL")
gurt_stats_push_secret = os.getenv("GURT_STATS_PUSH_SECRET")
if not api_internal_url:
print("WARNING: API_INTERNAL_URL not set. Gurt stats will not be pushed.")
if not gurt_stats_push_secret:
print("WARNING: GURT_STATS_PUSH_SECRET not set. Gurt stats push endpoint is insecure and likely won't work.")
try:
while True:
await asyncio.sleep(15) # Check more frequently for stats push
now = time.time()
# --- Push Stats (Runs frequently) ---
if api_internal_url and gurt_stats_push_secret and (now - cog.last_stats_push > STATS_PUSH_INTERVAL):
print("Pushing Gurt stats to API server...")
try:
stats_data = await cog.get_gurt_stats()
headers = {
"Authorization": f"Bearer {gurt_stats_push_secret}",
"Content-Type": "application/json"
}
# Use the cog's session, ensure it's created
if cog.session:
# Set a reasonable timeout for the stats push
push_timeout = aiohttp.ClientTimeout(total=10) # 10 seconds total timeout
async with cog.session.post(api_internal_url, json=stats_data, headers=headers, timeout=push_timeout, ssl=True) as response: # Explicitly enable SSL verification
if response.status == 200:
print(f"Successfully pushed Gurt stats (Status: {response.status})")
else:
error_text = await response.text()
print(f"Failed to push Gurt stats (Status: {response.status}): {error_text[:200]}") # Log only first 200 chars
else:
print("Error pushing stats: GurtCog session not initialized.")
cog.last_stats_push = now # Update timestamp even on failure to avoid spamming logs
except aiohttp.ClientConnectorSSLError as ssl_err:
print(f"SSL Error pushing Gurt stats: {ssl_err}. Ensure the API server's certificate is valid and trusted, or check network configuration.")
print("If using a self-signed certificate for development, the bot process might need to trust it.")
cog.last_stats_push = now # Update timestamp to avoid spamming logs
except aiohttp.ClientError as client_err:
print(f"HTTP Client Error pushing Gurt stats: {client_err}")
cog.last_stats_push = now # Update timestamp to avoid spamming logs
except asyncio.TimeoutError:
print("Timeout error pushing Gurt stats.")
cog.last_stats_push = now # Update timestamp to avoid spamming logs
except Exception as e:
print(f"Unexpected error pushing Gurt stats: {e}")
traceback.print_exc()
cog.last_stats_push = now # Update timestamp to avoid spamming logs
# --- Learning Analysis (Runs less frequently) ---
if now - cog.last_learning_update > LEARNING_UPDATE_INTERVAL:
if cog.message_cache['global_recent']:
print("Running conversation pattern analysis...")
# This function now likely resides in analysis.py
await analyze_conversation_patterns(cog) # Pass cog instance
cog.last_learning_update = now
print("Learning analysis cycle complete.")
else:
print("Skipping learning analysis: No recent messages.")
# --- Evolve Personality (Runs moderately frequently) ---
if now - cog.last_evolution_update > EVOLUTION_UPDATE_INTERVAL:
print("Running personality evolution...")
# This function now likely resides in analysis.py
await evolve_personality(cog) # Pass cog instance
cog.last_evolution_update = now
print("Personality evolution complete.")
# --- Update Interests (Runs moderately frequently) ---
if now - cog.last_interest_update > INTEREST_UPDATE_INTERVAL:
print("Running interest update...")
await update_interests(cog) # Call the local helper function below
print("Running interest decay check...")
await cog.memory_manager.decay_interests(
decay_interval_hours=INTEREST_DECAY_INTERVAL_HOURS
)
cog.last_interest_update = now # Reset timer after update and decay check
print("Interest update and decay check complete.")
# --- Memory Reflection (Runs less frequently) ---
if now - cog.last_reflection_time > REFLECTION_INTERVAL_SECONDS:
print("Running memory reflection...")
await reflect_on_memories(cog) # Call the reflection function from analysis.py
cog.last_reflection_time = now # Update timestamp
print("Memory reflection cycle complete.")
# --- Goal Decomposition (Runs periodically) ---
# Check less frequently than other tasks, e.g., every few minutes
if now - cog.last_goal_check_time > GOAL_CHECK_INTERVAL: # Need to add these to cog and config
print("Checking for pending goals to decompose...")
try:
pending_goals = await cog.memory_manager.get_goals(status='pending', limit=3) # Limit decomposition attempts per cycle
for goal in pending_goals:
goal_id = goal.get('goal_id')
description = goal.get('description')
if not goal_id or not description: continue
print(f" - Decomposing goal ID {goal_id}: '{description}'")
plan = await decompose_goal_into_steps(cog, description)
if plan and plan.get('goal_achievable') and plan.get('steps'):
# Goal is achievable and has steps, update status to active and store plan
await cog.memory_manager.update_goal(goal_id, status='active', details=plan)
print(f" - Goal ID {goal_id} decomposed and set to active.")
elif plan:
# Goal deemed not achievable by planner
await cog.memory_manager.update_goal(goal_id, status='failed', details={"reason": plan.get('reasoning', 'Deemed unachievable by planner.')})
print(f" - Goal ID {goal_id} marked as failed (unachievable). Reason: {plan.get('reasoning')}")
else:
# Decomposition failed entirely
await cog.memory_manager.update_goal(goal_id, status='failed', details={"reason": "Goal decomposition process failed."})
print(f" - Goal ID {goal_id} marked as failed (decomposition error).")
await asyncio.sleep(1) # Small delay between decomposing goals
cog.last_goal_check_time = now # Update timestamp after checking
except Exception as goal_e:
print(f"Error during goal decomposition check: {goal_e}")
traceback.print_exc()
cog.last_goal_check_time = now # Update timestamp even on error
# --- Goal Execution (Runs periodically) ---
if now - cog.last_goal_execution_time > GOAL_EXECUTION_INTERVAL:
print("Checking for active goals to execute...")
try:
active_goals = await cog.memory_manager.get_goals(status='active', limit=1) # Process one active goal per cycle for now
if active_goals:
goal = active_goals[0] # Get the highest priority active goal
goal_id = goal.get('goal_id')
description = goal.get('description')
plan = goal.get('details') # The decomposition plan is stored here
if goal_id and description and plan and isinstance(plan.get('steps'), list):
print(f"--- Executing Goal ID {goal_id}: '{description}' ---")
steps = plan['steps']
current_step_index = plan.get('current_step_index', 0) # Track progress
goal_failed = False
goal_completed = False
if current_step_index < len(steps):
step = steps[current_step_index]
step_desc = step.get('step_description')
tool_name = step.get('tool_name')
tool_args = step.get('tool_arguments')
print(f" - Step {current_step_index + 1}/{len(steps)}: {step_desc}")
if tool_name:
print(f" - Attempting tool: {tool_name} with args: {tool_args}")
tool_func = TOOL_MAPPING.get(tool_name)
tool_result = None
tool_error = None
tool_success = False
if tool_func:
try:
# Ensure args are a dictionary, default to empty if None/missing
args_to_pass = tool_args if isinstance(tool_args, dict) else {}
print(f" - Executing: {tool_name}(cog, **{args_to_pass})")
start_time = time.monotonic()
tool_result = await tool_func(cog, **args_to_pass)
end_time = time.monotonic()
print(f" - Tool '{tool_name}' returned: {str(tool_result)[:200]}...") # Log truncated result
# Check result for success/error
if isinstance(tool_result, dict) and "error" in tool_result:
tool_error = tool_result["error"]
print(f" - Tool '{tool_name}' reported error: {tool_error}")
cog.tool_stats[tool_name]["failure"] += 1
else:
tool_success = True
print(f" - Tool '{tool_name}' executed successfully.")
cog.tool_stats[tool_name]["success"] += 1
# Record stats
cog.tool_stats[tool_name]["count"] += 1
cog.tool_stats[tool_name]["total_time"] += (end_time - start_time)
except Exception as exec_e:
tool_error = f"Exception during execution: {str(exec_e)}"
print(f" - Tool '{tool_name}' raised exception: {exec_e}")
traceback.print_exc()
cog.tool_stats[tool_name]["failure"] += 1
cog.tool_stats[tool_name]["count"] += 1 # Count failures too
else:
tool_error = f"Tool '{tool_name}' not found in TOOL_MAPPING."
print(f" - Error: {tool_error}")
# --- Handle Tool Outcome ---
if tool_success:
# Store result if needed (optional, requires plan structure modification)
# plan['step_results'][current_step_index] = tool_result
current_step_index += 1
else:
goal_failed = True
plan['error_message'] = f"Failed at step {current_step_index + 1} ({tool_name}): {tool_error}"
else:
# Step doesn't require a tool (e.g., internal reasoning/check)
print(" - No tool required for this step (internal check/reasoning).")
current_step_index += 1 # Assume non-tool steps succeed for now
# Check if goal completed
if not goal_failed and current_step_index >= len(steps):
goal_completed = True
# --- Update Goal Status ---
plan['current_step_index'] = current_step_index # Update progress
if goal_completed:
await cog.memory_manager.update_goal(goal_id, status='completed', details=plan)
print(f"--- Goal ID {goal_id} completed successfully. ---")
elif goal_failed:
await cog.memory_manager.update_goal(goal_id, status='failed', details=plan)
print(f"--- Goal ID {goal_id} failed. ---")
else:
# Update details with current step index if still in progress
await cog.memory_manager.update_goal(goal_id, details=plan)
print(f" - Goal ID {goal_id} progress updated to step {current_step_index}.")
else:
# Should not happen if status is 'active', but handle defensively
print(f" - Goal ID {goal_id} is active but has no steps or index out of bounds. Marking as failed.")
await cog.memory_manager.update_goal(goal_id, status='failed', details={"reason": "Active goal has invalid step data."})
else:
print(f" - Skipping active goal ID {goal_id}: Missing description or valid plan/steps.")
# Optionally mark as failed if plan is invalid
if goal_id:
await cog.memory_manager.update_goal(goal_id, status='failed', details={"reason": "Invalid plan structure found during execution."})
else:
print("No active goals found to execute.")
cog.last_goal_execution_time = now # Update timestamp after checking/executing
except Exception as goal_exec_e:
print(f"Error during goal execution check: {goal_exec_e}")
traceback.print_exc()
cog.last_goal_execution_time = now # Update timestamp even on error
# --- Automatic Mood Change (Runs based on its own interval check) ---
await maybe_change_mood(cog) # Call the mood change logic
# --- Proactive Goal Creation Check (Runs periodically) ---
if now - cog.last_proactive_goal_check > PROACTIVE_GOAL_CHECK_INTERVAL: # Use imported config
print("Checking if Gurt should proactively create goals...")
try:
await proactively_create_goals(cog) # Call the function from analysis.py
cog.last_proactive_goal_check = now # Update timestamp
print("Proactive goal check complete.")
except Exception as proactive_e:
print(f"Error during proactive goal check: {proactive_e}")
traceback.print_exc()
cog.last_proactive_goal_check = now # Update timestamp even on error
# --- LLM-Driven Autonomous Action (Runs periodically based on probability) ---
if now - cog.last_internal_action_check > INTERNAL_ACTION_INTERVAL_SECONDS:
if random.random() < INTERNAL_ACTION_PROBABILITY:
print("--- Considering Autonomous Action ---")
action_decision = None
selected_tool_name = None
tool_args = None
tool_result = None
result_summary = "No action taken."
action_reasoning = "Probability met, but LLM decided against action or failed."
try:
# 1. Gather Context for LLM
context_summary = "Gurt is considering an autonomous action.\n"
context_summary += f"Current Mood: {cog.current_mood}\n"
# Add recent messages summary (optional, could be large)
# recent_msgs = list(cog.message_cache['global_recent'])[-10:] # Last 10 global msgs
# context_summary += f"Recent Messages (sample):\n" + json.dumps(recent_msgs, indent=2)[:500] + "...\n"
# Add active goals
active_goals = await cog.memory_manager.get_goals(status='active', limit=3)
if active_goals:
context_summary += f"Active Goals:\n" + json.dumps(active_goals, indent=2)[:500] + "...\n"
# Add recent internal action logs
recent_actions = await cog.memory_manager.get_internal_action_logs(limit=5)
if recent_actions:
context_summary += f"Recent Internal Actions:\n" + json.dumps(recent_actions, indent=2)[:500] + "...\n"
# Add key personality traits
traits = await cog.memory_manager.get_all_personality_traits()
if traits:
context_summary += f"Personality Snippet: { {k: round(v, 2) for k, v in traits.items() if k in ['mischief', 'curiosity', 'chattiness']} }\n"
# 2. Define LLM Prompt and Schema
action_decision_schema = {
"type": "object",
"properties": {
"should_act": {"type": "boolean", "description": "Whether Gurt should perform an autonomous action now."},
"reasoning": {"type": "string", "description": "Brief reasoning for the decision (why act or not act). Consider current goals, mood, recent activity, and potential usefulness."},
"action_tool_name": {"type": ["string", "null"], "description": "If acting, the name of the tool to use. Choose from available tools, prioritizing non-disruptive or informative actions unless a specific goal or high mischief suggests otherwise. Null if not acting."},
"action_arguments": {"type": ["object", "null"], "description": "If acting, a dictionary of arguments for the chosen tool. Null if not acting."}
},
"required": ["should_act", "reasoning"]
}
# Filter available tools - exclude highly dangerous/disruptive ones unless explicitly needed?
# For now, let the LLM choose from all, but guide it in the prompt.
available_tools_desc = "\n".join([f"- {name}" for name in TOOL_MAPPING.keys() if name not in ["create_new_tool"]]) # Exclude meta-tool for safety
system_prompt = (
"You are Gurt, deciding whether to perform an autonomous background action. "
"Consider your current mood, active goals, recent conversations/actions, and personality. "
"Prioritize actions that might be interesting, helpful for goals, or align with your personality (e.g., mischief, curiosity). "
"Avoid actions that are overly disruptive, spammy, or redundant if similar actions were taken recently. "
"If choosing to act, select an appropriate tool and provide valid arguments. "
f"Available tools for autonomous actions:\n{available_tools_desc}\n"
"Respond ONLY with the JSON decision."
)
user_prompt = f"Current Context:\n{context_summary}\n\nBased on this, should Gurt perform an autonomous action now? If so, which tool and arguments?"
# 3. Call LLM for Decision
print(" - Asking LLM for autonomous action decision...")
decision_data, _ = await get_internal_ai_json_response(
cog=cog,
prompt_messages=[{"role": "system", "content": system_prompt}, {"role": "user", "content": user_prompt}],
task_description="Autonomous Action Decision",
response_schema_dict=action_decision_schema,
model_name=cog.default_model, # Use default model
temperature=0.6 # Allow some creativity
)
# 4. Process LLM Decision
if decision_data and decision_data.get("should_act"):
action_decision = decision_data
selected_tool_name = action_decision.get("action_tool_name")
tool_args = action_decision.get("action_arguments")
action_reasoning = action_decision.get("reasoning", "LLM decided to act.")
print(f" - LLM decided to act: Tool='{selected_tool_name}', Args={tool_args}, Reason='{action_reasoning}'")
if not selected_tool_name or selected_tool_name not in TOOL_MAPPING:
print(f" - Error: LLM chose invalid or missing tool '{selected_tool_name}'. Aborting action.")
result_summary = f"Error: LLM chose invalid tool '{selected_tool_name}'."
selected_tool_name = None # Prevent execution
elif not isinstance(tool_args, dict) and tool_args is not None:
print(f" - Warning: LLM provided non-dict arguments '{tool_args}'. Attempting with empty args.")
result_summary = f"Warning: LLM provided invalid args '{tool_args}'. Used {{}}."
tool_args = {} # Default to empty dict if invalid but not None
elif tool_args is None:
tool_args = {} # Ensure it's a dict for execution
else:
action_reasoning = decision_data.get("reasoning", "LLM decided not to act or failed.") if decision_data else "LLM decision failed."
print(f" - LLM decided not to act. Reason: {action_reasoning}")
result_summary = f"No action taken. Reason: {action_reasoning}"
except Exception as llm_e:
print(f" - Error during LLM decision phase for autonomous action: {llm_e}")
traceback.print_exc()
result_summary = f"Error during LLM decision: {llm_e}"
action_reasoning = f"LLM decision phase failed: {llm_e}"
# 5. Execute Action (if decided)
if selected_tool_name and tool_args is not None: # Ensure args is at least {}
tool_func = TOOL_MAPPING.get(selected_tool_name)
if tool_func:
print(f" - Executing autonomous action: {selected_tool_name}(cog, **{tool_args})")
try:
start_time = time.monotonic()
tool_result = await tool_func(cog, **tool_args)
end_time = time.monotonic()
exec_time = end_time - start_time
result_summary = _create_result_summary(tool_result) # Use helper
print(f" - Autonomous action '{selected_tool_name}' completed in {exec_time:.3f}s. Result: {result_summary}")
# Update tool stats
if selected_tool_name in cog.tool_stats:
cog.tool_stats[selected_tool_name]["count"] += 1
cog.tool_stats[selected_tool_name]["total_time"] += exec_time
if isinstance(tool_result, dict) and "error" in tool_result:
cog.tool_stats[selected_tool_name]["failure"] += 1
else:
cog.tool_stats[selected_tool_name]["success"] += 1
except Exception as exec_e:
error_msg = f"Exception during autonomous execution of '{selected_tool_name}': {str(exec_e)}"
print(f" - Error: {error_msg}")
traceback.print_exc()
result_summary = f"Execution Exception: {error_msg}"
# Update tool stats for failure
if selected_tool_name in cog.tool_stats:
cog.tool_stats[selected_tool_name]["count"] += 1
cog.tool_stats[selected_tool_name]["failure"] += 1
else:
# Should have been caught earlier, but double-check
print(f" - Error: Tool '{selected_tool_name}' function not found in mapping during execution phase.")
result_summary = f"Error: Tool function for '{selected_tool_name}' not found."
# 6. Log Action (always log the attempt/decision)
try:
log_result = await cog.memory_manager.add_internal_action_log(
tool_name=selected_tool_name or "None", # Log 'None' if no tool was chosen
arguments=tool_args if selected_tool_name else None,
reasoning=action_reasoning,
result_summary=result_summary
)
if log_result.get("status") != "logged":
print(f" - Warning: Failed to log autonomous action attempt to memory: {log_result.get('error')}")
except Exception as log_e:
print(f" - Error logging autonomous action attempt to memory: {log_e}")
traceback.print_exc()
# 7. Report Action (Optional)
if AUTONOMOUS_ACTION_REPORT_CHANNEL_ID and selected_tool_name: # Only report if an action was attempted
try:
report_channel_id = int(AUTONOMOUS_ACTION_REPORT_CHANNEL_ID) # Ensure it's an int
channel = cog.bot.get_channel(report_channel_id)
if channel and isinstance(channel, discord.TextChannel):
report_content = (
f"⚙️ Gurt autonomously executed **{selected_tool_name}**.\n"
f"**Reasoning:** {action_reasoning}\n"
f"**Args:** `{json.dumps(tool_args)}`\n"
f"**Result:** `{result_summary}`"
)
# Discord message limit is 2000 chars
if len(report_content) > 2000:
report_content = report_content[:1997] + "..."
await channel.send(report_content)
print(f" - Reported autonomous action to channel {report_channel_id}.")
elif channel:
print(f" - Error: Report channel {report_channel_id} is not a TextChannel.")
else:
print(f" - Error: Could not find report channel with ID {report_channel_id}.")
except ValueError:
print(f" - Error: Invalid AUTONOMOUS_ACTION_REPORT_CHANNEL_ID: '{AUTONOMOUS_ACTION_REPORT_CHANNEL_ID}'. Must be an integer.")
except discord.Forbidden:
print(f" - Error: Bot lacks permissions to send messages in report channel {report_channel_id}.")
except Exception as report_e:
print(f" - Error reporting autonomous action to Discord: {report_e}")
traceback.print_exc()
print("--- Autonomous Action Cycle Complete ---")
# Update check timestamp regardless of whether probability was met or action occurred
cog.last_internal_action_check = now
except asyncio.CancelledError:
print("Background processing task cancelled")
except Exception as e:
print(f"Error in background processing task: {e}")
traceback.print_exc()
await asyncio.sleep(300) # Wait 5 minutes before retrying after an error
# --- Helper for Summarizing Tool Results ---
def _create_result_summary(tool_result: Any, max_len: int = 200) -> str:
"""Creates a concise summary string from a tool result dictionary or other type."""
if isinstance(tool_result, dict):
if "error" in tool_result:
return f"Error: {str(tool_result['error'])[:max_len]}"
elif "status" in tool_result:
summary = f"Status: {tool_result['status']}"
if "stdout" in tool_result and tool_result["stdout"]:
summary += f", stdout: {tool_result['stdout'][:max_len//2]}"
if "stderr" in tool_result and tool_result["stderr"]:
summary += f", stderr: {tool_result['stderr'][:max_len//2]}"
if "content" in tool_result:
summary += f", content: {tool_result['content'][:max_len//2]}..."
if "bytes_written" in tool_result:
summary += f", bytes: {tool_result['bytes_written']}"
if "message_id" in tool_result:
summary += f", msg_id: {tool_result['message_id']}"
# Add other common keys as needed
return summary[:max_len]
else:
# Generic dict summary
return f"Dict Result: {str(tool_result)[:max_len]}"
elif isinstance(tool_result, str):
return f"String Result: {tool_result[:max_len]}"
elif tool_result is None:
return "Result: None"
else:
return f"Result Type {type(tool_result)}: {str(tool_result)[:max_len]}"
# --- Automatic Mood Change Logic ---
async def maybe_change_mood(cog: 'GurtCog'):
"""Checks if enough time has passed and changes mood based on context."""
now = time.time()
time_since_last_change = now - cog.last_mood_change
next_change_interval = random.uniform(MOOD_CHANGE_INTERVAL_MIN, MOOD_CHANGE_INTERVAL_MAX)
if time_since_last_change > next_change_interval:
print(f"Time for a mood change (interval: {next_change_interval:.0f}s). Analyzing context...")
try:
# 1. Analyze Sentiment
positive_sentiment_score = 0
negative_sentiment_score = 0
neutral_sentiment_score = 0
sentiment_channels_count = 0
for channel_id, sentiment_data in cog.conversation_sentiment.items():
# Consider only channels active recently (e.g., within the last hour)
if now - cog.channel_activity.get(channel_id, 0) < 3600:
if sentiment_data["overall"] == "positive":
positive_sentiment_score += sentiment_data["intensity"]
elif sentiment_data["overall"] == "negative":
negative_sentiment_score += sentiment_data["intensity"]
else:
neutral_sentiment_score += sentiment_data["intensity"]
sentiment_channels_count += 1
avg_pos_intensity = positive_sentiment_score / sentiment_channels_count if sentiment_channels_count > 0 else 0
avg_neg_intensity = negative_sentiment_score / sentiment_channels_count if sentiment_channels_count > 0 else 0
avg_neu_intensity = neutral_sentiment_score / sentiment_channels_count if sentiment_channels_count > 0 else 0
print(f" - Sentiment Analysis: Pos={avg_pos_intensity:.2f}, Neg={avg_neg_intensity:.2f}, Neu={avg_neu_intensity:.2f}")
# Determine dominant sentiment category
dominant_sentiment = "neutral"
if avg_pos_intensity > avg_neg_intensity and avg_pos_intensity > avg_neu_intensity:
dominant_sentiment = "positive"
elif avg_neg_intensity > avg_pos_intensity and avg_neg_intensity > avg_neu_intensity:
dominant_sentiment = "negative"
# 2. Get Personality Traits
personality_traits = await cog.memory_manager.get_all_personality_traits()
if not personality_traits:
personality_traits = BASELINE_PERSONALITY.copy()
print(" - Warning: Using baseline personality traits for mood change.")
else:
print(f" - Personality Traits: Mischief={personality_traits.get('mischief', 0):.2f}, Sarcasm={personality_traits.get('sarcasm_level', 0):.2f}, Optimism={personality_traits.get('optimism', 0.5):.2f}")
# 3. Calculate Mood Weights
mood_weights = {mood: 1.0 for mood in MOOD_OPTIONS} # Start with base weight
# Apply Sentiment Bias (e.g., boost factor of 2)
sentiment_boost = 2.0
if dominant_sentiment == "positive":
for mood in MOOD_CATEGORIES.get("positive", []):
mood_weights[mood] *= sentiment_boost
elif dominant_sentiment == "negative":
for mood in MOOD_CATEGORIES.get("negative", []):
mood_weights[mood] *= sentiment_boost
else: # Neutral sentiment
for mood in MOOD_CATEGORIES.get("neutral", []):
mood_weights[mood] *= (sentiment_boost * 0.75) # Slightly boost neutral too
# Apply Personality Bias
mischief_trait = personality_traits.get('mischief', 0.5)
sarcasm_trait = personality_traits.get('sarcasm_level', 0.3)
optimism_trait = personality_traits.get('optimism', 0.5)
if mischief_trait > 0.6: # If high mischief
mood_weights["mischievous"] *= (1.0 + mischief_trait) # Boost mischievous based on trait level
if sarcasm_trait > 0.5: # If high sarcasm
mood_weights["sarcastic"] *= (1.0 + sarcasm_trait)
mood_weights["sassy"] *= (1.0 + sarcasm_trait * 0.5) # Also boost sassy a bit
if optimism_trait > 0.7: # If very optimistic
for mood in MOOD_CATEGORIES.get("positive", []):
mood_weights[mood] *= (1.0 + (optimism_trait - 0.5)) # Boost positive moods
elif optimism_trait < 0.3: # If pessimistic
for mood in MOOD_CATEGORIES.get("negative", []):
mood_weights[mood] *= (1.0 + (0.5 - optimism_trait)) # Boost negative moods
# Ensure current mood has very low weight to avoid picking it again
mood_weights[cog.current_mood] = 0.01
# Filter out moods with zero weight before choices
valid_moods = [mood for mood, weight in mood_weights.items() if weight > 0]
valid_weights = [mood_weights[mood] for mood in valid_moods]
if not valid_moods:
print(" - Error: No valid moods with positive weight found. Skipping mood change.")
return # Skip change if something went wrong
# 4. Select New Mood
new_mood = random.choices(valid_moods, weights=valid_weights, k=1)[0]
# 5. Update State & Log
old_mood = cog.current_mood
cog.current_mood = new_mood
cog.last_mood_change = now
print(f"Mood automatically changed: {old_mood} -> {new_mood} (Influenced by: Sentiment={dominant_sentiment}, Traits)")
except Exception as e:
print(f"Error during automatic mood change: {e}")
traceback.print_exc()
# Still update timestamp to avoid retrying immediately on error
cog.last_mood_change = now
# --- Interest Update Logic ---
async def update_interests(cog: 'GurtCog'):
"""Analyzes recent activity and updates Gurt's interest levels."""
print("Starting interest update cycle...")
try:
interest_changes = defaultdict(float)
# 1. Analyze Gurt's participation in topics
print(f"Analyzing Gurt participation topics: {dict(cog.gurt_participation_topics)}")
for topic, count in cog.gurt_participation_topics.items():
boost = INTEREST_PARTICIPATION_BOOST * count
interest_changes[topic] += boost
print(f" - Participation boost for '{topic}': +{boost:.3f} (Count: {count})")
# 2. Analyze reactions to Gurt's messages
print(f"Analyzing {len(cog.gurt_message_reactions)} reactions to Gurt's messages...")
processed_reaction_messages = set()
reactions_to_process = list(cog.gurt_message_reactions.items())
for message_id, reaction_data in reactions_to_process:
if message_id in processed_reaction_messages: continue
topic = reaction_data.get("topic")
if not topic:
try:
gurt_msg_data = next((msg for msg in cog.message_cache['global_recent'] if msg['id'] == message_id), None)
if gurt_msg_data and gurt_msg_data['content']:
# Use identify_conversation_topics from analysis.py
identified_topics = identify_conversation_topics(cog, [gurt_msg_data]) # Pass cog
if identified_topics:
topic = identified_topics[0]['topic']
print(f" - Determined topic '{topic}' for reaction msg {message_id} retrospectively.")
else: print(f" - Could not determine topic for reaction msg {message_id} retrospectively."); continue
else: print(f" - Could not find Gurt msg {message_id} in cache for reaction analysis."); continue
except Exception as topic_e: print(f" - Error determining topic for reaction msg {message_id}: {topic_e}"); continue
if topic:
topic = topic.lower().strip()
pos_reactions = reaction_data.get("positive", 0)
neg_reactions = reaction_data.get("negative", 0)
change = 0
if pos_reactions > neg_reactions: change = INTEREST_POSITIVE_REACTION_BOOST * (pos_reactions - neg_reactions)
elif neg_reactions > pos_reactions: change = INTEREST_NEGATIVE_REACTION_PENALTY * (neg_reactions - pos_reactions)
if change != 0:
interest_changes[topic] += change
print(f" - Reaction change for '{topic}' on msg {message_id}: {change:+.3f} ({pos_reactions} pos, {neg_reactions} neg)")
processed_reaction_messages.add(message_id)
# 3. Analyze recently learned facts
try:
recent_facts = await cog.memory_manager.get_general_facts(limit=10)
print(f"Analyzing {len(recent_facts)} recent general facts for interest boosts...")
for fact in recent_facts:
fact_lower = fact.lower()
# Basic keyword checks (could be improved)
if "game" in fact_lower or "gaming" in fact_lower: interest_changes["gaming"] += INTEREST_FACT_BOOST; print(f" - Fact boost for 'gaming'")
if "anime" in fact_lower or "manga" in fact_lower: interest_changes["anime"] += INTEREST_FACT_BOOST; print(f" - Fact boost for 'anime'")
if "teto" in fact_lower: interest_changes["kasane teto"] += INTEREST_FACT_BOOST * 2; print(f" - Fact boost for 'kasane teto'")
# Add more checks...
except Exception as fact_e: print(f" - Error analyzing recent facts: {fact_e}")
# --- Apply Changes ---
print(f"Applying interest changes: {dict(interest_changes)}")
if interest_changes:
for topic, change in interest_changes.items():
if change != 0: await cog.memory_manager.update_interest(topic, change)
else: print("No interest changes to apply.")
# Clear temporary tracking data
cog.gurt_participation_topics.clear()
now = time.time()
reactions_to_keep = {
msg_id: data for msg_id, data in cog.gurt_message_reactions.items()
if data.get("timestamp", 0) > (now - INTEREST_UPDATE_INTERVAL * 1.1)
}
cog.gurt_message_reactions = defaultdict(lambda: {"positive": 0, "negative": 0, "topic": None}, reactions_to_keep)
print("Interest update cycle finished.")
except Exception as e:
print(f"Error during interest update: {e}")
traceback.print_exc()