discordbot/wheatley/memory.py
2025-06-05 21:31:06 -06:00

824 lines
35 KiB
Python

import aiosqlite
import asyncio
import os
import time
import datetime
import re
import hashlib # Added for chroma_id generation
import json # Added for personality trait serialization/deserialization
from typing import Dict, List, Any, Optional, Tuple, Union # Added Union
import chromadb
from chromadb.utils import embedding_functions
from sentence_transformers import SentenceTransformer
import logging
# Configure logging
logging.basicConfig(
level=logging.INFO, format="%(asctime)s - %(name)s - %(levelname)s - %(message)s"
)
# Use a specific logger name for Wheatley's memory
logger = logging.getLogger("wheatley_memory")
# Constants (Removed Interest constants)
# --- Helper Function for Keyword Scoring (Kept for potential future use, but unused currently) ---
def calculate_keyword_score(text: str, context: str) -> int:
"""Calculates a simple keyword overlap score."""
if not context or not text:
return 0
context_words = set(re.findall(r"\b\w+\b", context.lower()))
text_words = set(re.findall(r"\b\w+\b", text.lower()))
# Ignore very common words (basic stopword list)
stopwords = {
"the",
"a",
"is",
"in",
"it",
"of",
"and",
"to",
"for",
"on",
"with",
"that",
"this",
"i",
"you",
"me",
"my",
"your",
}
context_words -= stopwords
text_words -= stopwords
if not context_words: # Avoid division by zero if context is only stopwords
return 0
overlap = len(context_words.intersection(text_words))
# Normalize score slightly by context length (more overlap needed for longer context)
# score = overlap / (len(context_words) ** 0.5) # Example normalization
score = overlap # Simpler score for now
return score
class MemoryManager:
"""Handles database interactions for Wheatley's memory (facts and semantic).""" # Updated docstring
def __init__(
self,
db_path: str,
max_user_facts: int = 20,
max_general_facts: int = 100,
semantic_model_name: str = "all-MiniLM-L6-v2",
chroma_path: str = "data/chroma_db_wheatley",
): # Changed default chroma_path
self.db_path = db_path
self.max_user_facts = max_user_facts
self.max_general_facts = max_general_facts
self.db_lock = asyncio.Lock() # Lock for SQLite operations
# Ensure data directories exist
os.makedirs(os.path.dirname(self.db_path), exist_ok=True)
os.makedirs(chroma_path, exist_ok=True)
logger.info(
f"Wheatley MemoryManager initialized with db_path: {self.db_path}, chroma_path: {chroma_path}"
) # Updated text
# --- Semantic Memory Setup ---
self.chroma_path = chroma_path
self.semantic_model_name = semantic_model_name
self.chroma_client = None
self.embedding_function = None
self.semantic_collection = None # For messages
self.fact_collection = None # For facts
self.transformer_model = None
self._initialize_semantic_memory_sync() # Initialize semantic components synchronously for simplicity during init
def _initialize_semantic_memory_sync(self):
"""Synchronously initializes ChromaDB client, model, and collection."""
try:
logger.info("Initializing ChromaDB client...")
# Use PersistentClient for saving data to disk
self.chroma_client = chromadb.PersistentClient(path=self.chroma_path)
logger.info(
f"Loading Sentence Transformer model: {self.semantic_model_name}..."
)
# Load the model directly
self.transformer_model = SentenceTransformer(self.semantic_model_name)
# Create a custom embedding function using the loaded model
class CustomEmbeddingFunction(embedding_functions.EmbeddingFunction):
def __init__(self, model):
self.model = model
def __call__(self, input: chromadb.Documents) -> chromadb.Embeddings:
# Ensure input is a list of strings
if not isinstance(input, list):
input = [str(input)] # Convert single item to list
elif not all(isinstance(item, str) for item in input):
input = [
str(item) for item in input
] # Ensure all items are strings
logger.debug(f"Generating embeddings for {len(input)} documents.")
embeddings = self.model.encode(
input, show_progress_bar=False
).tolist()
logger.debug(f"Generated {len(embeddings)} embeddings.")
return embeddings
self.embedding_function = CustomEmbeddingFunction(self.transformer_model)
logger.info(
"Getting/Creating ChromaDB collection 'wheatley_semantic_memory'..."
) # Renamed collection
# Get or create the collection with the custom embedding function
self.semantic_collection = self.chroma_client.get_or_create_collection(
name="wheatley_semantic_memory", # Renamed collection
embedding_function=self.embedding_function,
metadata={"hnsw:space": "cosine"}, # Use cosine distance for similarity
)
logger.info("ChromaDB message collection initialized successfully.")
logger.info(
"Getting/Creating ChromaDB collection 'wheatley_fact_memory'..."
) # Renamed collection
# Get or create the collection for facts
self.fact_collection = self.chroma_client.get_or_create_collection(
name="wheatley_fact_memory", # Renamed collection
embedding_function=self.embedding_function,
metadata={"hnsw:space": "cosine"}, # Use cosine distance for similarity
)
logger.info("ChromaDB fact collection initialized successfully.")
except Exception as e:
logger.error(
f"Failed to initialize semantic memory (ChromaDB): {e}", exc_info=True
)
# Set components to None to indicate failure
self.chroma_client = None
self.transformer_model = None
self.embedding_function = None
self.semantic_collection = None
self.fact_collection = None # Also set fact_collection to None on error
async def initialize_sqlite_database(self):
"""Initializes the SQLite database and creates tables if they don't exist."""
async with aiosqlite.connect(self.db_path) as db:
await db.execute("PRAGMA journal_mode=WAL;")
# Create user_facts table if it doesn't exist
await db.execute(
"""
CREATE TABLE IF NOT EXISTS user_facts (
user_id TEXT NOT NULL,
fact TEXT NOT NULL,
chroma_id TEXT, -- Added for linking to ChromaDB
timestamp REAL DEFAULT (unixepoch('now')),
PRIMARY KEY (user_id, fact)
);
"""
)
# Check if chroma_id column exists in user_facts table
try:
cursor = await db.execute("PRAGMA table_info(user_facts)")
columns = await cursor.fetchall()
column_names = [column[1] for column in columns]
if "chroma_id" not in column_names:
logger.info("Adding chroma_id column to user_facts table")
await db.execute("ALTER TABLE user_facts ADD COLUMN chroma_id TEXT")
except Exception as e:
logger.error(
f"Error checking/adding chroma_id column to user_facts: {e}",
exc_info=True,
)
# Create indexes
await db.execute(
"CREATE INDEX IF NOT EXISTS idx_user_facts_user ON user_facts (user_id);"
)
await db.execute(
"CREATE INDEX IF NOT EXISTS idx_user_facts_chroma_id ON user_facts (chroma_id);"
) # Index for chroma_id
# Create general_facts table if it doesn't exist
await db.execute(
"""
CREATE TABLE IF NOT EXISTS general_facts (
fact TEXT PRIMARY KEY NOT NULL,
chroma_id TEXT, -- Added for linking to ChromaDB
timestamp REAL DEFAULT (unixepoch('now'))
);
"""
)
# Check if chroma_id column exists in general_facts table
try:
cursor = await db.execute("PRAGMA table_info(general_facts)")
columns = await cursor.fetchall()
column_names = [column[1] for column in columns]
if "chroma_id" not in column_names:
logger.info("Adding chroma_id column to general_facts table")
await db.execute(
"ALTER TABLE general_facts ADD COLUMN chroma_id TEXT"
)
except Exception as e:
logger.error(
f"Error checking/adding chroma_id column to general_facts: {e}",
exc_info=True,
)
# Create index for general_facts
await db.execute(
"CREATE INDEX IF NOT EXISTS idx_general_facts_chroma_id ON general_facts (chroma_id);"
) # Index for chroma_id
# --- Removed Personality Table ---
# --- Removed Interests Table ---
# --- Removed Goals Table ---
await db.commit()
logger.info(
f"Wheatley SQLite database initialized/verified at {self.db_path}"
) # Updated text
# --- SQLite Helper Methods ---
async def _db_execute(self, sql: str, params: tuple = ()):
async with self.db_lock:
async with aiosqlite.connect(self.db_path) as db:
await db.execute(sql, params)
await db.commit()
async def _db_fetchone(self, sql: str, params: tuple = ()) -> Optional[tuple]:
async with aiosqlite.connect(self.db_path) as db:
async with db.execute(sql, params) as cursor:
return await cursor.fetchone()
async def _db_fetchall(self, sql: str, params: tuple = ()) -> List[tuple]:
async with aiosqlite.connect(self.db_path) as db:
async with db.execute(sql, params) as cursor:
return await cursor.fetchall()
# --- User Fact Memory Methods (SQLite + Relevance) ---
async def add_user_fact(self, user_id: str, fact: str) -> Dict[str, Any]:
"""Stores a fact about a user in the SQLite database, enforcing limits."""
if not user_id or not fact:
return {"error": "user_id and fact are required."}
logger.info(f"Attempting to add user fact for {user_id}: '{fact}'")
try:
# Check SQLite first
existing = await self._db_fetchone(
"SELECT chroma_id FROM user_facts WHERE user_id = ? AND fact = ?",
(user_id, fact),
)
if existing:
logger.info(f"Fact already known for user {user_id} (SQLite).")
return {"status": "duplicate", "user_id": user_id, "fact": fact}
count_result = await self._db_fetchone(
"SELECT COUNT(*) FROM user_facts WHERE user_id = ?", (user_id,)
)
current_count = count_result[0] if count_result else 0
status = "added"
deleted_chroma_id = None
if current_count >= self.max_user_facts:
logger.warning(
f"User {user_id} fact limit ({self.max_user_facts}) reached. Deleting oldest."
)
# Fetch oldest fact and its chroma_id for deletion
oldest_fact_row = await self._db_fetchone(
"SELECT fact, chroma_id FROM user_facts WHERE user_id = ? ORDER BY timestamp ASC LIMIT 1",
(user_id,),
)
if oldest_fact_row:
oldest_fact, deleted_chroma_id = oldest_fact_row
await self._db_execute(
"DELETE FROM user_facts WHERE user_id = ? AND fact = ?",
(user_id, oldest_fact),
)
logger.info(
f"Deleted oldest fact for user {user_id} from SQLite: '{oldest_fact}'"
)
status = (
"limit_reached" # Indicate limit was hit but fact was added
)
# Generate chroma_id
fact_hash = hashlib.sha1(fact.encode()).hexdigest()[:16] # Short hash
chroma_id = f"user-{user_id}-{fact_hash}"
# Insert into SQLite
await self._db_execute(
"INSERT INTO user_facts (user_id, fact, chroma_id) VALUES (?, ?, ?)",
(user_id, fact, chroma_id),
)
logger.info(f"Fact added for user {user_id} to SQLite.")
# Add to ChromaDB fact collection
if self.fact_collection and self.embedding_function:
try:
metadata = {
"user_id": user_id,
"type": "user",
"timestamp": time.time(),
}
await asyncio.to_thread(
self.fact_collection.add,
documents=[fact],
metadatas=[metadata],
ids=[chroma_id],
)
logger.info(
f"Fact added/updated for user {user_id} in ChromaDB (ID: {chroma_id})."
)
# Delete the oldest fact from ChromaDB if limit was reached
if deleted_chroma_id:
logger.info(
f"Attempting to delete oldest fact from ChromaDB (ID: {deleted_chroma_id})."
)
await asyncio.to_thread(
self.fact_collection.delete, ids=[deleted_chroma_id]
)
logger.info(
f"Successfully deleted oldest fact from ChromaDB (ID: {deleted_chroma_id})."
)
except Exception as chroma_e:
logger.error(
f"ChromaDB error adding/deleting user fact for {user_id} (ID: {chroma_id}): {chroma_e}",
exc_info=True,
)
# Note: Fact is still in SQLite, but ChromaDB might be inconsistent. Consider rollback? For now, just log.
else:
logger.warning(
f"ChromaDB fact collection not available. Skipping embedding for user fact {user_id}."
)
return {"status": status, "user_id": user_id, "fact_added": fact}
except Exception as e:
logger.error(f"Error adding user fact for {user_id}: {e}", exc_info=True)
return {"error": f"Database error adding user fact: {str(e)}"}
async def get_user_facts(
self, user_id: str, context: Optional[str] = None
) -> List[str]:
"""Retrieves stored facts about a user, optionally scored by relevance to context."""
if not user_id:
logger.warning("get_user_facts called without user_id.")
return []
logger.info(
f"Retrieving facts for user {user_id} (context provided: {bool(context)})"
)
limit = self.max_user_facts # Use the class attribute for limit
try:
if context and self.fact_collection and self.embedding_function:
# --- Semantic Search ---
logger.debug(
f"Performing semantic search for user facts (User: {user_id}, Limit: {limit})"
)
try:
# Query ChromaDB for facts relevant to the context
results = await asyncio.to_thread(
self.fact_collection.query,
query_texts=[context],
n_results=limit,
where={ # Use $and for multiple conditions
"$and": [{"user_id": user_id}, {"type": "user"}]
},
include=["documents"], # Only need the fact text
)
logger.debug(f"ChromaDB user fact query results: {results}")
if results and results.get("documents") and results["documents"][0]:
relevant_facts = results["documents"][0]
logger.info(
f"Found {len(relevant_facts)} semantically relevant user facts for {user_id}."
)
return relevant_facts
else:
logger.info(
f"No semantic user facts found for {user_id} matching context."
)
return [] # Return empty list if no semantic matches
except Exception as chroma_e:
logger.error(
f"ChromaDB error searching user facts for {user_id}: {chroma_e}",
exc_info=True,
)
# Fallback to SQLite retrieval on ChromaDB error
logger.warning(
f"Falling back to SQLite retrieval for user facts {user_id} due to ChromaDB error."
)
# Proceed to the SQLite block below
# --- SQLite Fallback / No Context ---
# If no context, or if ChromaDB failed/unavailable, get newest N facts from SQLite
logger.debug(
f"Retrieving user facts from SQLite (User: {user_id}, Limit: {limit})"
)
rows_ordered = await self._db_fetchall(
"SELECT fact FROM user_facts WHERE user_id = ? ORDER BY timestamp DESC LIMIT ?",
(user_id, limit),
)
sqlite_facts = [row[0] for row in rows_ordered]
logger.info(
f"Retrieved {len(sqlite_facts)} user facts from SQLite for {user_id}."
)
return sqlite_facts
except Exception as e:
logger.error(
f"Error retrieving user facts for {user_id}: {e}", exc_info=True
)
return []
# --- General Fact Memory Methods (SQLite + Relevance) ---
async def add_general_fact(self, fact: str) -> Dict[str, Any]:
"""Stores a general fact in the SQLite database, enforcing limits."""
if not fact:
return {"error": "fact is required."}
logger.info(f"Attempting to add general fact: '{fact}'")
try:
# Check SQLite first
existing = await self._db_fetchone(
"SELECT chroma_id FROM general_facts WHERE fact = ?", (fact,)
)
if existing:
logger.info(f"General fact already known (SQLite): '{fact}'")
return {"status": "duplicate", "fact": fact}
count_result = await self._db_fetchone(
"SELECT COUNT(*) FROM general_facts", ()
)
current_count = count_result[0] if count_result else 0
status = "added"
deleted_chroma_id = None
if current_count >= self.max_general_facts:
logger.warning(
f"General fact limit ({self.max_general_facts}) reached. Deleting oldest."
)
# Fetch oldest fact and its chroma_id for deletion
oldest_fact_row = await self._db_fetchone(
"SELECT fact, chroma_id FROM general_facts ORDER BY timestamp ASC LIMIT 1",
(),
)
if oldest_fact_row:
oldest_fact, deleted_chroma_id = oldest_fact_row
await self._db_execute(
"DELETE FROM general_facts WHERE fact = ?", (oldest_fact,)
)
logger.info(
f"Deleted oldest general fact from SQLite: '{oldest_fact}'"
)
status = "limit_reached"
# Generate chroma_id
fact_hash = hashlib.sha1(fact.encode()).hexdigest()[:16] # Short hash
chroma_id = f"general-{fact_hash}"
# Insert into SQLite
await self._db_execute(
"INSERT INTO general_facts (fact, chroma_id) VALUES (?, ?)",
(fact, chroma_id),
)
logger.info(f"General fact added to SQLite: '{fact}'")
# Add to ChromaDB fact collection
if self.fact_collection and self.embedding_function:
try:
metadata = {"type": "general", "timestamp": time.time()}
await asyncio.to_thread(
self.fact_collection.add,
documents=[fact],
metadatas=[metadata],
ids=[chroma_id],
)
logger.info(
f"General fact added/updated in ChromaDB (ID: {chroma_id})."
)
# Delete the oldest fact from ChromaDB if limit was reached
if deleted_chroma_id:
logger.info(
f"Attempting to delete oldest general fact from ChromaDB (ID: {deleted_chroma_id})."
)
await asyncio.to_thread(
self.fact_collection.delete, ids=[deleted_chroma_id]
)
logger.info(
f"Successfully deleted oldest general fact from ChromaDB (ID: {deleted_chroma_id})."
)
except Exception as chroma_e:
logger.error(
f"ChromaDB error adding/deleting general fact (ID: {chroma_id}): {chroma_e}",
exc_info=True,
)
# Note: Fact is still in SQLite.
else:
logger.warning(
f"ChromaDB fact collection not available. Skipping embedding for general fact."
)
return {"status": status, "fact_added": fact}
except Exception as e:
logger.error(f"Error adding general fact: {e}", exc_info=True)
return {"error": f"Database error adding general fact: {str(e)}"}
async def get_general_facts(
self,
query: Optional[str] = None,
limit: Optional[int] = 10,
context: Optional[str] = None,
) -> List[str]:
"""Retrieves stored general facts, optionally filtering by query or scoring by context relevance."""
logger.info(
f"Retrieving general facts (query='{query}', limit={limit}, context provided: {bool(context)})"
)
limit = min(max(1, limit or 10), 50) # Use provided limit or default 10, max 50
try:
if context and self.fact_collection and self.embedding_function:
# --- Semantic Search (Prioritized if context is provided) ---
# Note: The 'query' parameter is ignored when context is provided for semantic search.
logger.debug(
f"Performing semantic search for general facts (Limit: {limit})"
)
try:
results = await asyncio.to_thread(
self.fact_collection.query,
query_texts=[context],
n_results=limit,
where={"type": "general"}, # Filter by type
include=["documents"], # Only need the fact text
)
logger.debug(f"ChromaDB general fact query results: {results}")
if results and results.get("documents") and results["documents"][0]:
relevant_facts = results["documents"][0]
logger.info(
f"Found {len(relevant_facts)} semantically relevant general facts."
)
return relevant_facts
else:
logger.info("No semantic general facts found matching context.")
return [] # Return empty list if no semantic matches
except Exception as chroma_e:
logger.error(
f"ChromaDB error searching general facts: {chroma_e}",
exc_info=True,
)
# Fallback to SQLite retrieval on ChromaDB error
logger.warning(
"Falling back to SQLite retrieval for general facts due to ChromaDB error."
)
# Proceed to the SQLite block below, respecting the original 'query' if present
# --- SQLite Fallback / No Context / ChromaDB Error ---
# If no context, or if ChromaDB failed/unavailable, get newest N facts from SQLite, applying query if present.
logger.debug(
f"Retrieving general facts from SQLite (Query: '{query}', Limit: {limit})"
)
sql = "SELECT fact FROM general_facts"
params = []
if query:
# Apply the LIKE query only in the SQLite fallback scenario
sql += " WHERE fact LIKE ?"
params.append(f"%{query}%")
sql += " ORDER BY timestamp DESC LIMIT ?"
params.append(limit)
rows_ordered = await self._db_fetchall(sql, tuple(params))
sqlite_facts = [row[0] for row in rows_ordered]
logger.info(
f"Retrieved {len(sqlite_facts)} general facts from SQLite (Query: '{query}')."
)
return sqlite_facts
except Exception as e:
logger.error(f"Error retrieving general facts: {e}", exc_info=True)
return []
# --- Personality Trait Methods (REMOVED) ---
# --- Interest Methods (REMOVED) ---
# --- Goal Management Methods (REMOVED) ---
# --- Semantic Memory Methods (ChromaDB) ---
async def add_message_embedding(
self, message_id: str, text: str, metadata: Dict[str, Any]
) -> Dict[str, Any]:
"""Generates embedding and stores a message in ChromaDB."""
if not self.semantic_collection:
return {"error": "Semantic memory (ChromaDB) is not initialized."}
if not text:
return {"error": "Cannot add empty text to semantic memory."}
logger.info(f"Adding message {message_id} to semantic memory.")
try:
# ChromaDB expects lists for inputs
await asyncio.to_thread(
self.semantic_collection.add,
documents=[text],
metadatas=[metadata],
ids=[message_id],
)
logger.info(f"Successfully added message {message_id} to ChromaDB.")
return {"status": "success", "message_id": message_id}
except Exception as e:
logger.error(
f"ChromaDB error adding message {message_id}: {e}", exc_info=True
)
return {"error": f"Semantic memory error adding message: {str(e)}"}
async def search_semantic_memory(
self,
query_text: str,
n_results: int = 5,
filter_metadata: Optional[Dict[str, Any]] = None,
) -> List[Dict[str, Any]]:
"""Searches ChromaDB for messages semantically similar to the query text."""
if not self.semantic_collection:
logger.warning(
"Search semantic memory called, but ChromaDB is not initialized."
)
return []
if not query_text:
logger.warning("Search semantic memory called with empty query text.")
return []
logger.info(
f"Searching semantic memory (n_results={n_results}, filter={filter_metadata}) for query: '{query_text[:50]}...'"
)
try:
# Perform the query in a separate thread as ChromaDB operations can be blocking
results = await asyncio.to_thread(
self.semantic_collection.query,
query_texts=[query_text],
n_results=n_results,
where=filter_metadata, # Optional filter based on metadata
include=[
"metadatas",
"documents",
"distances",
], # Include distance for relevance
)
logger.debug(f"ChromaDB query results: {results}")
# Process results
processed_results = []
if results and results.get("ids") and results["ids"][0]:
for i, doc_id in enumerate(results["ids"][0]):
processed_results.append(
{
"id": doc_id,
"document": (
results["documents"][0][i]
if results.get("documents")
else None
),
"metadata": (
results["metadatas"][0][i]
if results.get("metadatas")
else None
),
"distance": (
results["distances"][0][i]
if results.get("distances")
else None
),
}
)
logger.info(f"Found {len(processed_results)} semantic results.")
return processed_results
except Exception as e:
logger.error(
f"ChromaDB error searching memory for query '{query_text[:50]}...': {e}",
exc_info=True,
)
return []
async def delete_user_fact(
self, user_id: str, fact_to_delete: str
) -> Dict[str, Any]:
"""Deletes a specific fact for a user from both SQLite and ChromaDB."""
if not user_id or not fact_to_delete:
return {"error": "user_id and fact_to_delete are required."}
logger.info(f"Attempting to delete user fact for {user_id}: '{fact_to_delete}'")
deleted_chroma_id = None
try:
# Check if fact exists and get chroma_id
row = await self._db_fetchone(
"SELECT chroma_id FROM user_facts WHERE user_id = ? AND fact = ?",
(user_id, fact_to_delete),
)
if not row:
logger.warning(
f"Fact not found in SQLite for user {user_id}: '{fact_to_delete}'"
)
return {
"status": "not_found",
"user_id": user_id,
"fact": fact_to_delete,
}
deleted_chroma_id = row[0]
# Delete from SQLite
await self._db_execute(
"DELETE FROM user_facts WHERE user_id = ? AND fact = ?",
(user_id, fact_to_delete),
)
logger.info(
f"Deleted fact from SQLite for user {user_id}: '{fact_to_delete}'"
)
# Delete from ChromaDB if chroma_id exists
if deleted_chroma_id and self.fact_collection:
try:
logger.info(
f"Attempting to delete fact from ChromaDB (ID: {deleted_chroma_id})."
)
await asyncio.to_thread(
self.fact_collection.delete, ids=[deleted_chroma_id]
)
logger.info(
f"Successfully deleted fact from ChromaDB (ID: {deleted_chroma_id})."
)
except Exception as chroma_e:
logger.error(
f"ChromaDB error deleting user fact ID {deleted_chroma_id}: {chroma_e}",
exc_info=True,
)
# Log error but consider SQLite deletion successful
return {
"status": "deleted",
"user_id": user_id,
"fact_deleted": fact_to_delete,
}
except Exception as e:
logger.error(f"Error deleting user fact for {user_id}: {e}", exc_info=True)
return {"error": f"Database error deleting user fact: {str(e)}"}
async def delete_general_fact(self, fact_to_delete: str) -> Dict[str, Any]:
"""Deletes a specific general fact from both SQLite and ChromaDB."""
if not fact_to_delete:
return {"error": "fact_to_delete is required."}
logger.info(f"Attempting to delete general fact: '{fact_to_delete}'")
deleted_chroma_id = None
try:
# Check if fact exists and get chroma_id
row = await self._db_fetchone(
"SELECT chroma_id FROM general_facts WHERE fact = ?", (fact_to_delete,)
)
if not row:
logger.warning(f"General fact not found in SQLite: '{fact_to_delete}'")
return {"status": "not_found", "fact": fact_to_delete}
deleted_chroma_id = row[0]
# Delete from SQLite
await self._db_execute(
"DELETE FROM general_facts WHERE fact = ?", (fact_to_delete,)
)
logger.info(f"Deleted general fact from SQLite: '{fact_to_delete}'")
# Delete from ChromaDB if chroma_id exists
if deleted_chroma_id and self.fact_collection:
try:
logger.info(
f"Attempting to delete general fact from ChromaDB (ID: {deleted_chroma_id})."
)
await asyncio.to_thread(
self.fact_collection.delete, ids=[deleted_chroma_id]
)
logger.info(
f"Successfully deleted general fact from ChromaDB (ID: {deleted_chroma_id})."
)
except Exception as chroma_e:
logger.error(
f"ChromaDB error deleting general fact ID {deleted_chroma_id}: {chroma_e}",
exc_info=True,
)
# Log error but consider SQLite deletion successful
return {"status": "deleted", "fact_deleted": fact_to_delete}
except Exception as e:
logger.error(f"Error deleting general fact: {e}", exc_info=True)
return {"error": f"Database error deleting general fact: {str(e)}"}