discordbot/gurt_memory.py
2025-06-05 21:31:06 -06:00

1543 lines
67 KiB
Python

import aiosqlite
import asyncio
import os
import time
import datetime
import re
import hashlib # Added for chroma_id generation
import json # Added for personality trait serialization/deserialization
from typing import Dict, List, Any, Optional, Tuple, Union # Added Union
import chromadb
from chromadb.utils import embedding_functions
from sentence_transformers import SentenceTransformer
import logging
# Configure logging
logging.basicConfig(
level=logging.INFO, format="%(asctime)s - %(name)s - %(levelname)s - %(message)s"
)
logger = logging.getLogger(__name__)
# Constants
INTEREST_INITIAL_LEVEL = 0.1
INTEREST_MAX_LEVEL = 1.0
INTEREST_MIN_LEVEL = 0.0
INTEREST_DECAY_RATE = 0.02 # Default decay rate per cycle
INTEREST_DECAY_INTERVAL_HOURS = 24 # Default interval for decay check
# --- Helper Function for Keyword Scoring ---
def calculate_keyword_score(text: str, context: str) -> int:
"""Calculates a simple keyword overlap score."""
if not context or not text:
return 0
context_words = set(re.findall(r"\b\w+\b", context.lower()))
text_words = set(re.findall(r"\b\w+\b", text.lower()))
# Ignore very common words (basic stopword list)
stopwords = {
"the",
"a",
"is",
"in",
"it",
"of",
"and",
"to",
"for",
"on",
"with",
"that",
"this",
"i",
"you",
"me",
"my",
"your",
}
context_words -= stopwords
text_words -= stopwords
if not context_words: # Avoid division by zero if context is only stopwords
return 0
overlap = len(context_words.intersection(text_words))
# Normalize score slightly by context length (more overlap needed for longer context)
# score = overlap / (len(context_words) ** 0.5) # Example normalization
score = overlap # Simpler score for now
return score
class MemoryManager:
"""Handles database interactions for Gurt's memory (facts and semantic)."""
def __init__(
self,
db_path: str,
max_user_facts: int = 20,
max_general_facts: int = 100,
semantic_model_name: str = "all-MiniLM-L6-v2",
chroma_path: str = "data/chroma_db",
):
self.db_path = db_path
self.max_user_facts = max_user_facts
self.max_general_facts = max_general_facts
self.db_lock = asyncio.Lock() # Lock for SQLite operations
# Ensure data directories exist
os.makedirs(os.path.dirname(self.db_path), exist_ok=True)
os.makedirs(chroma_path, exist_ok=True)
logger.info(
f"MemoryManager initialized with db_path: {self.db_path}, chroma_path: {chroma_path}"
)
# --- Semantic Memory Setup ---
self.chroma_path = chroma_path
self.semantic_model_name = semantic_model_name
self.chroma_client = None
self.embedding_function = None
self.semantic_collection = None # For messages
self.fact_collection = None # For facts
self.transformer_model = None
self._initialize_semantic_memory_sync() # Initialize semantic components synchronously for simplicity during init
def _initialize_semantic_memory_sync(self):
"""Synchronously initializes ChromaDB client, model, and collection."""
try:
logger.info("Initializing ChromaDB client...")
# Use PersistentClient for saving data to disk
self.chroma_client = chromadb.PersistentClient(path=self.chroma_path)
logger.info(
f"Loading Sentence Transformer model: {self.semantic_model_name}..."
)
# Load the model directly
self.transformer_model = SentenceTransformer(self.semantic_model_name)
# Create a custom embedding function using the loaded model
class CustomEmbeddingFunction(embedding_functions.EmbeddingFunction):
def __init__(self, model):
self.model = model
def __call__(self, input: chromadb.Documents) -> chromadb.Embeddings:
# Ensure input is a list of strings
if not isinstance(input, list):
input = [str(input)] # Convert single item to list
elif not all(isinstance(item, str) for item in input):
input = [
str(item) for item in input
] # Ensure all items are strings
logger.debug(f"Generating embeddings for {len(input)} documents.")
embeddings = self.model.encode(
input, show_progress_bar=False
).tolist()
logger.debug(f"Generated {len(embeddings)} embeddings.")
return embeddings
self.embedding_function = CustomEmbeddingFunction(self.transformer_model)
logger.info(
"Getting/Creating ChromaDB collection 'gurt_semantic_memory'..."
)
# Get or create the collection with the custom embedding function
self.semantic_collection = self.chroma_client.get_or_create_collection(
name="gurt_semantic_memory",
embedding_function=self.embedding_function,
metadata={"hnsw:space": "cosine"}, # Use cosine distance for similarity
) # Added missing closing parenthesis
logger.info("ChromaDB message collection initialized successfully.")
logger.info("Getting/Creating ChromaDB collection 'gurt_fact_memory'...")
# Get or create the collection for facts
self.fact_collection = self.chroma_client.get_or_create_collection(
name="gurt_fact_memory",
embedding_function=self.embedding_function,
metadata={"hnsw:space": "cosine"}, # Use cosine distance for similarity
)
logger.info("ChromaDB fact collection initialized successfully.")
except Exception as e:
logger.error(
f"Failed to initialize semantic memory (ChromaDB): {e}", exc_info=True
)
# Set components to None to indicate failure
self.chroma_client = None
self.transformer_model = None
self.embedding_function = None
self.semantic_collection = None
self.fact_collection = None # Also set fact_collection to None on error
async def initialize_sqlite_database(self):
"""Initializes the SQLite database and creates tables if they don't exist."""
async with aiosqlite.connect(self.db_path) as db:
await db.execute("PRAGMA journal_mode=WAL;")
# Create user_facts table if it doesn't exist
await db.execute(
"""
CREATE TABLE IF NOT EXISTS user_facts (
user_id TEXT NOT NULL,
fact TEXT NOT NULL,
chroma_id TEXT, -- Added for linking to ChromaDB
timestamp REAL DEFAULT (unixepoch('now')),
PRIMARY KEY (user_id, fact)
);
"""
)
# Check if chroma_id column exists in user_facts table
try:
# Try to get column info
cursor = await db.execute("PRAGMA table_info(user_facts)")
columns = await cursor.fetchall()
column_names = [column[1] for column in columns]
# If chroma_id column doesn't exist, add it
if "chroma_id" not in column_names:
logger.info("Adding chroma_id column to user_facts table")
await db.execute("ALTER TABLE user_facts ADD COLUMN chroma_id TEXT")
except Exception as e:
logger.error(
f"Error checking/adding chroma_id column to user_facts: {e}",
exc_info=True,
)
# Create indexes
await db.execute(
"CREATE INDEX IF NOT EXISTS idx_user_facts_user ON user_facts (user_id);"
)
await db.execute(
"CREATE INDEX IF NOT EXISTS idx_user_facts_chroma_id ON user_facts (chroma_id);"
) # Index for chroma_id
# Create general_facts table if it doesn't exist
await db.execute(
"""
CREATE TABLE IF NOT EXISTS general_facts (
fact TEXT PRIMARY KEY NOT NULL,
chroma_id TEXT, -- Added for linking to ChromaDB
timestamp REAL DEFAULT (unixepoch('now'))
);
"""
)
# Check if chroma_id column exists in general_facts table
try:
# Try to get column info
cursor = await db.execute("PRAGMA table_info(general_facts)")
columns = await cursor.fetchall()
column_names = [column[1] for column in columns]
# If chroma_id column doesn't exist, add it
if "chroma_id" not in column_names:
logger.info("Adding chroma_id column to general_facts table")
await db.execute(
"ALTER TABLE general_facts ADD COLUMN chroma_id TEXT"
)
except Exception as e:
logger.error(
f"Error checking/adding chroma_id column to general_facts: {e}",
exc_info=True,
)
# Create index for general_facts
await db.execute(
"CREATE INDEX IF NOT EXISTS idx_general_facts_chroma_id ON general_facts (chroma_id);"
) # Index for chroma_id
# --- Add Personality Table ---
await db.execute(
"""
CREATE TABLE IF NOT EXISTS gurt_personality (
trait_key TEXT PRIMARY KEY NOT NULL,
trait_value TEXT NOT NULL, -- Store value as JSON string
last_updated REAL DEFAULT (unixepoch('now'))
);
"""
)
logger.info("Personality table created/verified.")
# --- End Personality Table ---
# --- Add Interests Table ---
await db.execute(
"""
CREATE TABLE IF NOT EXISTS gurt_interests (
interest_topic TEXT PRIMARY KEY NOT NULL,
interest_level REAL DEFAULT 0.1, -- Start with a small default level
last_updated REAL DEFAULT (unixepoch('now'))
);
"""
)
await db.execute(
"CREATE INDEX IF NOT EXISTS idx_interest_level ON gurt_interests (interest_level);"
)
logger.info("Interests table created/verified.")
# --- End Interests Table ---
# --- Add Goals Table ---
await db.execute(
"""
CREATE TABLE IF NOT EXISTS gurt_goals (
goal_id INTEGER PRIMARY KEY AUTOINCREMENT,
description TEXT NOT NULL UNIQUE, -- The goal description
status TEXT DEFAULT 'pending', -- e.g., pending, active, completed, failed
priority INTEGER DEFAULT 5, -- Lower number = higher priority
created_timestamp REAL DEFAULT (unixepoch('now')),
last_updated REAL DEFAULT (unixepoch('now')),
details TEXT, -- Optional JSON blob for sub-tasks, progress, etc.
guild_id TEXT, -- The server ID where the goal was created
channel_id TEXT, -- The channel ID where the goal was created
user_id TEXT -- The user ID who created the goal
);
"""
)
await db.execute(
"CREATE INDEX IF NOT EXISTS idx_goal_status ON gurt_goals (status);"
)
await db.execute(
"CREATE INDEX IF NOT EXISTS idx_goal_priority ON gurt_goals (priority);"
)
logger.info("Goals table created/verified.")
# --- End Goals Table ---
# Add ALTER TABLE statements here to ensure columns exist
try:
# Check if guild_id column exists
cursor = await db.execute("PRAGMA table_info(gurt_goals)")
columns = await cursor.fetchall()
column_names = [column[1] for column in columns]
if "guild_id" not in column_names:
logger.info("Adding guild_id column to gurt_goals table")
await db.execute("ALTER TABLE gurt_goals ADD COLUMN guild_id TEXT")
if "channel_id" not in column_names:
logger.info("Adding channel_id column to gurt_goals table")
await db.execute(
"ALTER TABLE gurt_goals ADD COLUMN channel_id TEXT"
)
if "user_id" not in column_names:
logger.info("Adding user_id column to gurt_goals table")
await db.execute("ALTER TABLE gurt_goals ADD COLUMN user_id TEXT")
except Exception as e:
logger.error(
f"Error checking/adding columns to gurt_goals table: {e}",
exc_info=True,
)
# --- Add Internal Actions Log Table ---
await db.execute(
"""
CREATE TABLE IF NOT EXISTS internal_actions (
action_id INTEGER PRIMARY KEY AUTOINCREMENT,
timestamp REAL DEFAULT (unixepoch('now')),
tool_name TEXT NOT NULL,
arguments_json TEXT, -- Store arguments as JSON string
reasoning TEXT, -- Added: Reasoning behind the action
result_summary TEXT -- Store a summary of the result or error message
);
"""
)
# Check if reasoning column exists
try:
cursor = await db.execute("PRAGMA table_info(internal_actions)")
columns = await cursor.fetchall()
column_names = [column[1] for column in columns]
if "reasoning" not in column_names:
logger.info("Adding reasoning column to internal_actions table")
await db.execute(
"ALTER TABLE internal_actions ADD COLUMN reasoning TEXT"
)
except Exception as e:
logger.error(
f"Error checking/adding reasoning column to internal_actions: {e}",
exc_info=True,
)
await db.execute(
"CREATE INDEX IF NOT EXISTS idx_internal_actions_timestamp ON internal_actions (timestamp);"
)
await db.execute(
"CREATE INDEX IF NOT EXISTS idx_internal_actions_tool_name ON internal_actions (tool_name);"
)
logger.info("Internal Actions Log table created/verified.")
# --- End Internal Actions Log Table ---
await db.commit()
logger.info(f"SQLite database initialized/verified at {self.db_path}")
# --- SQLite Helper Methods ---
async def _db_execute(self, sql: str, params: tuple = ()):
async with self.db_lock:
async with aiosqlite.connect(self.db_path) as db:
await db.execute(sql, params)
await db.commit()
async def _db_fetchone(self, sql: str, params: tuple = ()) -> Optional[tuple]:
async with aiosqlite.connect(self.db_path) as db:
async with db.execute(sql, params) as cursor:
return await cursor.fetchone()
async def _db_fetchall(self, sql: str, params: tuple = ()) -> List[tuple]:
async with aiosqlite.connect(self.db_path) as db:
async with db.execute(sql, params) as cursor:
return await cursor.fetchall()
# --- User Fact Memory Methods (SQLite + Relevance) ---
async def add_user_fact(self, user_id: str, fact: str) -> Dict[str, Any]:
"""Stores a fact about a user in the SQLite database, enforcing limits."""
if not user_id or not fact:
return {"error": "user_id and fact are required."}
logger.info(f"Attempting to add user fact for {user_id}: '{fact}'")
try:
# Check SQLite first
existing = await self._db_fetchone(
"SELECT chroma_id FROM user_facts WHERE user_id = ? AND fact = ?",
(user_id, fact),
)
if existing:
logger.info(f"Fact already known for user {user_id} (SQLite).")
return {"status": "duplicate", "user_id": user_id, "fact": fact}
count_result = await self._db_fetchone(
"SELECT COUNT(*) FROM user_facts WHERE user_id = ?", (user_id,)
)
current_count = count_result[0] if count_result else 0
status = "added"
deleted_chroma_id = None
if current_count >= self.max_user_facts:
logger.warning(
f"User {user_id} fact limit ({self.max_user_facts}) reached. Deleting oldest."
)
# Fetch oldest fact and its chroma_id for deletion
oldest_fact_row = await self._db_fetchone(
"SELECT fact, chroma_id FROM user_facts WHERE user_id = ? ORDER BY timestamp ASC LIMIT 1",
(user_id,),
)
if oldest_fact_row:
oldest_fact, deleted_chroma_id = oldest_fact_row
await self._db_execute(
"DELETE FROM user_facts WHERE user_id = ? AND fact = ?",
(user_id, oldest_fact),
)
logger.info(
f"Deleted oldest fact for user {user_id} from SQLite: '{oldest_fact}'"
)
status = (
"limit_reached" # Indicate limit was hit but fact was added
)
# Generate chroma_id
fact_hash = hashlib.sha1(fact.encode()).hexdigest()[:16] # Short hash
chroma_id = f"user-{user_id}-{fact_hash}"
# Insert into SQLite
await self._db_execute(
"INSERT INTO user_facts (user_id, fact, chroma_id) VALUES (?, ?, ?)",
(user_id, fact, chroma_id),
)
logger.info(f"Fact added for user {user_id} to SQLite.")
# Add to ChromaDB fact collection
if self.fact_collection and self.embedding_function:
try:
metadata = {
"user_id": user_id,
"type": "user",
"timestamp": time.time(),
}
await asyncio.to_thread(
self.fact_collection.add,
documents=[fact],
metadatas=[metadata],
ids=[chroma_id],
)
logger.info(
f"Fact added/updated for user {user_id} in ChromaDB (ID: {chroma_id})."
)
# Delete the oldest fact from ChromaDB if limit was reached
if deleted_chroma_id:
logger.info(
f"Attempting to delete oldest fact from ChromaDB (ID: {deleted_chroma_id})."
)
await asyncio.to_thread(
self.fact_collection.delete, ids=[deleted_chroma_id]
)
logger.info(
f"Successfully deleted oldest fact from ChromaDB (ID: {deleted_chroma_id})."
)
except Exception as chroma_e:
logger.error(
f"ChromaDB error adding/deleting user fact for {user_id} (ID: {chroma_id}): {chroma_e}",
exc_info=True,
)
# Note: Fact is still in SQLite, but ChromaDB might be inconsistent. Consider rollback? For now, just log.
else:
logger.warning(
f"ChromaDB fact collection not available. Skipping embedding for user fact {user_id}."
)
return {"status": status, "user_id": user_id, "fact_added": fact}
except Exception as e:
logger.error(f"Error adding user fact for {user_id}: {e}", exc_info=True)
return {"error": f"Database error adding user fact: {str(e)}"}
async def get_user_facts(
self, user_id: str, context: Optional[str] = None
) -> List[str]:
"""Retrieves stored facts about a user, optionally scored by relevance to context."""
if not user_id:
logger.warning("get_user_facts called without user_id.")
return []
logger.info(
f"Retrieving facts for user {user_id} (context provided: {bool(context)})"
)
limit = self.max_user_facts # Use the class attribute for limit
try:
if context and self.fact_collection and self.embedding_function:
# --- Semantic Search ---
logger.debug(
f"Performing semantic search for user facts (User: {user_id}, Limit: {limit})"
)
try:
# Query ChromaDB for facts relevant to the context
results = await asyncio.to_thread(
self.fact_collection.query,
query_texts=[context],
n_results=limit,
where={ # Use $and for multiple conditions
"$and": [{"user_id": user_id}, {"type": "user"}]
},
include=["documents"], # Only need the fact text
)
logger.debug(f"ChromaDB user fact query results: {results}")
if results and results.get("documents") and results["documents"][0]:
relevant_facts = results["documents"][0]
logger.info(
f"Found {len(relevant_facts)} semantically relevant user facts for {user_id}."
)
return relevant_facts
else:
logger.info(
f"No semantic user facts found for {user_id} matching context."
)
return [] # Return empty list if no semantic matches
except Exception as chroma_e:
logger.error(
f"ChromaDB error searching user facts for {user_id}: {chroma_e}",
exc_info=True,
)
# Fallback to SQLite retrieval on ChromaDB error
logger.warning(
f"Falling back to SQLite retrieval for user facts {user_id} due to ChromaDB error."
)
# Proceed to the SQLite block below
# --- SQLite Fallback / No Context ---
# If no context, or if ChromaDB failed/unavailable, get newest N facts from SQLite
logger.debug(
f"Retrieving user facts from SQLite (User: {user_id}, Limit: {limit})"
)
rows_ordered = await self._db_fetchall(
"SELECT fact FROM user_facts WHERE user_id = ? ORDER BY timestamp DESC LIMIT ?",
(user_id, limit),
)
sqlite_facts = [row[0] for row in rows_ordered]
logger.info(
f"Retrieved {len(sqlite_facts)} user facts from SQLite for {user_id}."
)
return sqlite_facts
except Exception as e:
logger.error(
f"Error retrieving user facts for {user_id}: {e}", exc_info=True
)
return []
# --- General Fact Memory Methods (SQLite + Relevance) ---
async def add_general_fact(self, fact: str) -> Dict[str, Any]:
"""Stores a general fact in the SQLite database, enforcing limits."""
if not fact:
return {"error": "fact is required."}
logger.info(f"Attempting to add general fact: '{fact}'")
try:
# Check SQLite first
existing = await self._db_fetchone(
"SELECT chroma_id FROM general_facts WHERE fact = ?", (fact,)
)
if existing:
logger.info(f"General fact already known (SQLite): '{fact}'")
return {"status": "duplicate", "fact": fact}
count_result = await self._db_fetchone(
"SELECT COUNT(*) FROM general_facts", ()
)
current_count = count_result[0] if count_result else 0
status = "added"
deleted_chroma_id = None
if current_count >= self.max_general_facts:
logger.warning(
f"General fact limit ({self.max_general_facts}) reached. Deleting oldest."
)
# Fetch oldest fact and its chroma_id for deletion
oldest_fact_row = await self._db_fetchone(
"SELECT fact, chroma_id FROM general_facts ORDER BY timestamp ASC LIMIT 1",
(),
)
if oldest_fact_row:
oldest_fact, deleted_chroma_id = oldest_fact_row
await self._db_execute(
"DELETE FROM general_facts WHERE fact = ?", (oldest_fact,)
)
logger.info(
f"Deleted oldest general fact from SQLite: '{oldest_fact}'"
)
status = "limit_reached"
# Generate chroma_id
fact_hash = hashlib.sha1(fact.encode()).hexdigest()[:16] # Short hash
chroma_id = f"general-{fact_hash}"
# Insert into SQLite
await self._db_execute(
"INSERT INTO general_facts (fact, chroma_id) VALUES (?, ?)",
(fact, chroma_id),
)
logger.info(f"General fact added to SQLite: '{fact}'")
# Add to ChromaDB fact collection
if self.fact_collection and self.embedding_function:
try:
metadata = {"type": "general", "timestamp": time.time()}
await asyncio.to_thread(
self.fact_collection.add,
documents=[fact],
metadatas=[metadata],
ids=[chroma_id],
)
logger.info(
f"General fact added/updated in ChromaDB (ID: {chroma_id})."
)
# Delete the oldest fact from ChromaDB if limit was reached
if deleted_chroma_id:
logger.info(
f"Attempting to delete oldest general fact from ChromaDB (ID: {deleted_chroma_id})."
)
await asyncio.to_thread(
self.fact_collection.delete, ids=[deleted_chroma_id]
)
logger.info(
f"Successfully deleted oldest general fact from ChromaDB (ID: {deleted_chroma_id})."
)
except Exception as chroma_e:
logger.error(
f"ChromaDB error adding/deleting general fact (ID: {chroma_id}): {chroma_e}",
exc_info=True,
)
# Note: Fact is still in SQLite.
else:
logger.warning(
f"ChromaDB fact collection not available. Skipping embedding for general fact."
)
return {"status": status, "fact_added": fact}
except Exception as e:
logger.error(f"Error adding general fact: {e}", exc_info=True)
return {"error": f"Database error adding general fact: {str(e)}"}
async def get_general_facts(
self,
query: Optional[str] = None,
limit: Optional[int] = 10,
context: Optional[str] = None,
) -> List[str]:
"""Retrieves stored general facts, optionally filtering by query or scoring by context relevance."""
logger.info(
f"Retrieving general facts (query='{query}', limit={limit}, context provided: {bool(context)})"
)
limit = min(max(1, limit or 10), 50) # Use provided limit or default 10, max 50
try:
if context and self.fact_collection and self.embedding_function:
# --- Semantic Search (Prioritized if context is provided) ---
# Note: The 'query' parameter is ignored when context is provided for semantic search.
logger.debug(
f"Performing semantic search for general facts (Limit: {limit})"
)
try:
results = await asyncio.to_thread(
self.fact_collection.query,
query_texts=[context],
n_results=limit,
where={"type": "general"}, # Filter by type
include=["documents"], # Only need the fact text
)
logger.debug(f"ChromaDB general fact query results: {results}")
if results and results.get("documents") and results["documents"][0]:
relevant_facts = results["documents"][0]
logger.info(
f"Found {len(relevant_facts)} semantically relevant general facts."
)
return relevant_facts
else:
logger.info("No semantic general facts found matching context.")
return [] # Return empty list if no semantic matches
except Exception as chroma_e:
logger.error(
f"ChromaDB error searching general facts: {chroma_e}",
exc_info=True,
)
# Fallback to SQLite retrieval on ChromaDB error
logger.warning(
"Falling back to SQLite retrieval for general facts due to ChromaDB error."
)
# Proceed to the SQLite block below, respecting the original 'query' if present
# --- SQLite Fallback / No Context / ChromaDB Error ---
# If no context, or if ChromaDB failed/unavailable, get newest N facts from SQLite, applying query if present.
logger.debug(
f"Retrieving general facts from SQLite (Query: '{query}', Limit: {limit})"
)
sql = "SELECT fact FROM general_facts"
params = []
if query:
# Apply the LIKE query only in the SQLite fallback scenario
sql += " WHERE fact LIKE ?"
params.append(f"%{query}%")
sql += " ORDER BY timestamp DESC LIMIT ?"
params.append(limit)
rows_ordered = await self._db_fetchall(sql, tuple(params))
sqlite_facts = [row[0] for row in rows_ordered]
logger.info(
f"Retrieved {len(sqlite_facts)} general facts from SQLite (Query: '{query}')."
)
return sqlite_facts
except Exception as e:
logger.error(f"Error retrieving general facts: {e}", exc_info=True)
return []
# --- Personality Trait Methods (SQLite) ---
async def set_personality_trait(self, key: str, value: Any):
"""Stores or updates a personality trait in the database."""
if not key:
logger.error("set_personality_trait called with empty key.")
return
try:
# Serialize the value to a JSON string to handle different types (str, int, float, bool)
value_json = json.dumps(value)
await self._db_execute(
"INSERT OR REPLACE INTO gurt_personality (trait_key, trait_value, last_updated) VALUES (?, ?, unixepoch('now'))",
(key, value_json),
)
logger.info(f"Personality trait '{key}' set/updated.")
except Exception as e:
logger.error(f"Error setting personality trait '{key}': {e}", exc_info=True)
async def get_personality_trait(self, key: str) -> Optional[Any]:
"""Retrieves a specific personality trait from the database."""
if not key:
logger.error("get_personality_trait called with empty key.")
return None
try:
row = await self._db_fetchone(
"SELECT trait_value FROM gurt_personality WHERE trait_key = ?", (key,)
)
if row:
# Deserialize the JSON string back to its original type
value = json.loads(row[0])
logger.debug(f"Retrieved personality trait '{key}': {value}")
return value
else:
logger.debug(f"Personality trait '{key}' not found.")
return None
except Exception as e:
logger.error(f"Error getting personality trait '{key}': {e}", exc_info=True)
return None
async def get_all_personality_traits(self) -> Dict[str, Any]:
"""Retrieves all personality traits from the database."""
traits = {}
try:
rows = await self._db_fetchall(
"SELECT trait_key, trait_value FROM gurt_personality", ()
)
for key, value_json in rows:
try:
# Deserialize each value
traits[key] = json.loads(value_json)
except json.JSONDecodeError as json_e:
logger.error(
f"Error decoding JSON for trait '{key}': {json_e}. Value: {value_json}"
)
traits[key] = None # Or handle error differently
logger.info(f"Retrieved {len(traits)} personality traits.")
return traits
except Exception as e:
logger.error(f"Error getting all personality traits: {e}", exc_info=True)
return {}
async def load_baseline_personality(self, baseline_traits: Dict[str, Any]):
"""Loads baseline traits into the personality table ONLY if it's empty."""
if not baseline_traits:
logger.warning(
"load_baseline_personality called with empty baseline traits."
)
return
try:
# Check if the table is empty
count_result = await self._db_fetchone(
"SELECT COUNT(*) FROM gurt_personality", ()
)
current_count = count_result[0] if count_result else 0
if current_count == 0:
logger.info("Personality table is empty. Loading baseline traits...")
for key, value in baseline_traits.items():
await self.set_personality_trait(key, value)
logger.info(f"Loaded {len(baseline_traits)} baseline traits.")
else:
logger.info(
f"Personality table already contains {current_count} traits. Skipping baseline load."
)
except Exception as e:
logger.error(f"Error loading baseline personality: {e}", exc_info=True)
async def load_baseline_interests(self, baseline_interests: Dict[str, float]):
"""Loads baseline interests into the interests table ONLY if it's empty."""
if not baseline_interests:
logger.warning(
"load_baseline_interests called with empty baseline interests."
)
return
try:
# Check if the table is empty
count_result = await self._db_fetchone(
"SELECT COUNT(*) FROM gurt_interests", ()
)
current_count = count_result[0] if count_result else 0
if current_count == 0:
logger.info("Interests table is empty. Loading baseline interests...")
async with self.db_lock:
async with aiosqlite.connect(self.db_path) as db:
for topic, level in baseline_interests.items():
topic_normalized = topic.lower().strip()
if not topic_normalized:
continue # Skip empty topics
# Clamp initial level just in case
level_clamped = max(
INTEREST_MIN_LEVEL, min(INTEREST_MAX_LEVEL, level)
)
await db.execute(
"""
INSERT INTO gurt_interests (interest_topic, interest_level, last_updated)
VALUES (?, ?, unixepoch('now'))
""",
(topic_normalized, level_clamped),
)
await db.commit()
logger.info(f"Loaded {len(baseline_interests)} baseline interests.")
else:
logger.info(
f"Interests table already contains {current_count} interests. Skipping baseline load."
)
except Exception as e:
logger.error(f"Error loading baseline interests: {e}", exc_info=True)
async def reset_personality_to_baseline(self, baseline_traits: Dict[str, Any]):
"""Clears all personality traits and reloads them from the provided baseline."""
logger.info("Resetting personality traits to baseline...")
try:
await self._db_execute("DELETE FROM gurt_personality")
logger.info("Cleared all existing personality traits from the database.")
await self.load_baseline_personality(baseline_traits)
logger.info("Successfully reset personality traits to baseline.")
return {
"status": "success",
"message": "Personality traits reset to baseline.",
}
except Exception as e:
logger.error(f"Error resetting personality traits: {e}", exc_info=True)
return {"error": f"Database error resetting personality: {str(e)}"}
async def reset_interests_to_baseline(self, baseline_interests: Dict[str, float]):
"""Clears all interests and reloads them from the provided baseline."""
logger.info("Resetting interests to baseline...")
try:
await self._db_execute("DELETE FROM gurt_interests")
logger.info("Cleared all existing interests from the database.")
await self.load_baseline_interests(baseline_interests)
logger.info("Successfully reset interests to baseline.")
return {"status": "success", "message": "Interests reset to baseline."}
except Exception as e:
logger.error(f"Error resetting interests: {e}", exc_info=True)
return {"error": f"Database error resetting interests: {str(e)}"}
# --- Interest Methods (SQLite) ---
async def update_interest(self, topic: str, change: float):
"""
Updates the interest level for a given topic. Creates the topic if it doesn't exist.
Clamps the interest level between INTEREST_MIN_LEVEL and INTEREST_MAX_LEVEL.
Args:
topic: The interest topic (e.g., "gaming", "anime").
change: The amount to change the interest level by (can be positive or negative).
"""
if not topic:
logger.error("update_interest called with empty topic.")
return
topic = topic.lower().strip() # Normalize topic
if not topic:
logger.error("update_interest called with empty topic after normalization.")
return
try:
async with self.db_lock:
async with aiosqlite.connect(self.db_path) as db:
# Check if topic exists
cursor = await db.execute(
"SELECT interest_level FROM gurt_interests WHERE interest_topic = ?",
(topic,),
)
row = await cursor.fetchone()
if row:
current_level = row[0]
new_level = current_level + change
else:
# Topic doesn't exist, create it with initial level + change
current_level = (
INTEREST_INITIAL_LEVEL # Use constant for initial level
)
new_level = current_level + change
logger.info(
f"Creating new interest: '{topic}' with initial level {current_level:.3f} + change {change:.3f}"
)
# Clamp the new level
new_level_clamped = max(
INTEREST_MIN_LEVEL, min(INTEREST_MAX_LEVEL, new_level)
)
# Insert or update the topic
await db.execute(
"""
INSERT INTO gurt_interests (interest_topic, interest_level, last_updated)
VALUES (?, ?, unixepoch('now'))
ON CONFLICT(interest_topic) DO UPDATE SET
interest_level = excluded.interest_level,
last_updated = excluded.last_updated;
""",
(topic, new_level_clamped),
)
await db.commit()
logger.info(
f"Interest '{topic}' updated: {current_level:.3f} -> {new_level_clamped:.3f} (Change: {change:.3f})"
)
except Exception as e:
logger.error(f"Error updating interest '{topic}': {e}", exc_info=True)
async def get_interests(
self, limit: int = 5, min_level: float = 0.2
) -> List[Tuple[str, float]]:
"""
Retrieves the top interests above a minimum level, ordered by interest level descending.
Args:
limit: The maximum number of interests to return.
min_level: The minimum interest level required to be included.
Returns:
A list of tuples, where each tuple is (interest_topic, interest_level).
"""
interests = []
try:
rows = await self._db_fetchall(
"SELECT interest_topic, interest_level FROM gurt_interests WHERE interest_level >= ? ORDER BY interest_level DESC LIMIT ?",
(min_level, limit),
)
interests = [(row[0], row[1]) for row in rows]
logger.info(
f"Retrieved {len(interests)} interests (Limit: {limit}, Min Level: {min_level})."
)
return interests
except Exception as e:
logger.error(f"Error getting interests: {e}", exc_info=True)
return []
async def decay_interests(
self,
decay_rate: float = INTEREST_DECAY_RATE,
decay_interval_hours: int = INTEREST_DECAY_INTERVAL_HOURS,
):
"""
Applies decay to interest levels for topics not updated recently.
Args:
decay_rate: The fraction to reduce the interest level by (e.g., 0.01 for 1% decay).
decay_interval_hours: Only decay interests not updated within this many hours.
"""
if not (0 < decay_rate < 1):
logger.error(f"Invalid decay_rate: {decay_rate}. Must be between 0 and 1.")
return
if decay_interval_hours <= 0:
logger.error(
f"Invalid decay_interval_hours: {decay_interval_hours}. Must be positive."
)
return
try:
cutoff_timestamp = time.time() - (decay_interval_hours * 3600)
logger.info(
f"Applying interest decay (Rate: {decay_rate}) for interests not updated since {datetime.datetime.fromtimestamp(cutoff_timestamp).isoformat()}..."
)
async with self.db_lock:
async with aiosqlite.connect(self.db_path) as db:
# Select topics eligible for decay
cursor = await db.execute(
"SELECT interest_topic, interest_level FROM gurt_interests WHERE last_updated < ?",
(cutoff_timestamp,),
)
topics_to_decay = await cursor.fetchall()
if not topics_to_decay:
logger.info("No interests found eligible for decay.")
return
updated_count = 0
# Apply decay and update
for topic, current_level in topics_to_decay:
# Calculate decay amount (ensure it doesn't go below min level instantly)
decay_amount = current_level * decay_rate
new_level = current_level - decay_amount
# Ensure level doesn't drop below the minimum threshold due to decay
new_level_clamped = max(INTEREST_MIN_LEVEL, new_level)
# Only update if the level actually changes significantly
if abs(new_level_clamped - current_level) > 0.001:
await db.execute(
"UPDATE gurt_interests SET interest_level = ? WHERE interest_topic = ?",
(new_level_clamped, topic),
)
logger.debug(
f"Decayed interest '{topic}': {current_level:.3f} -> {new_level_clamped:.3f}"
)
updated_count += 1
await db.commit()
logger.info(
f"Interest decay cycle complete. Updated {updated_count}/{len(topics_to_decay)} eligible interests."
)
except Exception as e:
logger.error(f"Error during interest decay: {e}", exc_info=True)
# --- Semantic Memory Methods (ChromaDB) ---
async def add_message_embedding(
self,
message_id: str,
formatted_message_data: Dict[str, Any],
metadata: Dict[str, Any],
) -> Dict[str, Any]:
"""
Generates embedding and stores a message (including attachment descriptions)
in ChromaDB.
"""
if not self.semantic_collection:
return {"error": "Semantic memory (ChromaDB) is not initialized."}
# Construct the text to embed: content + attachment descriptions
text_to_embed_parts = []
if formatted_message_data.get("content"):
text_to_embed_parts.append(formatted_message_data["content"])
attachment_descs = formatted_message_data.get("attachment_descriptions", [])
if attachment_descs:
# Add a separator if there's content AND attachments
if text_to_embed_parts:
text_to_embed_parts.append("\n") # Add newline separator
# Append descriptions
for att in attachment_descs:
text_to_embed_parts.append(att.get("description", ""))
text_to_embed = " ".join(text_to_embed_parts).strip()
if not text_to_embed:
# This might happen if a message ONLY contains attachments and no text content,
# but format_message should always produce descriptions. Log if empty.
logger.warning(
f"Message {message_id} resulted in empty text_to_embed. Original data: {formatted_message_data}"
)
return {"error": "Cannot add empty derived text to semantic memory."}
logger.info(
f"Adding message {message_id} to semantic memory (including attachments)."
)
try:
# ChromaDB expects lists for inputs
await asyncio.to_thread(
self.semantic_collection.add,
documents=[text_to_embed], # Embed the combined text
metadatas=[metadata],
ids=[message_id],
)
logger.info(f"Successfully added message {message_id} to ChromaDB.")
return {"status": "success", "message_id": message_id}
except Exception as e:
logger.error(
f"ChromaDB error adding message {message_id}: {e}", exc_info=True
)
return {"error": f"Semantic memory error adding message: {str(e)}"}
async def search_semantic_memory(
self,
query_text: str,
n_results: int = 5,
filter_metadata: Optional[Dict[str, Any]] = None,
) -> List[Dict[str, Any]]:
"""Searches ChromaDB for messages semantically similar to the query text."""
if not self.semantic_collection:
logger.warning(
"Search semantic memory called, but ChromaDB is not initialized."
)
return []
if not query_text:
logger.warning("Search semantic memory called with empty query text.")
return []
logger.info(
f"Searching semantic memory (n_results={n_results}, filter={filter_metadata}) for query: '{query_text[:50]}...'"
)
try:
# Perform the query in a separate thread as ChromaDB operations can be blocking
results = await asyncio.to_thread(
self.semantic_collection.query,
query_texts=[query_text],
n_results=n_results,
where=filter_metadata, # Optional filter based on metadata
include=[
"metadatas",
"documents",
"distances",
], # Include distance for relevance
)
logger.debug(f"ChromaDB query results: {results}")
# Process results
processed_results = []
if results and results.get("ids") and results["ids"][0]:
for i, doc_id in enumerate(results["ids"][0]):
processed_results.append(
{
"id": doc_id,
"document": (
results["documents"][0][i]
if results.get("documents")
else None
),
"metadata": (
results["metadatas"][0][i]
if results.get("metadatas")
else None
),
"distance": (
results["distances"][0][i]
if results.get("distances")
else None
),
}
)
logger.info(f"Found {len(processed_results)} semantic results.")
return processed_results
except Exception as e:
logger.error(
f"ChromaDB error searching memory for query '{query_text[:50]}...': {e}",
exc_info=True,
)
return []
async def delete_user_fact(
self, user_id: str, fact_to_delete: str
) -> Dict[str, Any]:
"""Deletes a specific fact for a user from both SQLite and ChromaDB."""
if not user_id or not fact_to_delete:
return {"error": "user_id and fact_to_delete are required."}
logger.info(f"Attempting to delete user fact for {user_id}: '{fact_to_delete}'")
deleted_chroma_id = None
try:
# Check if fact exists and get chroma_id
row = await self._db_fetchone(
"SELECT chroma_id FROM user_facts WHERE user_id = ? AND fact = ?",
(user_id, fact_to_delete),
)
if not row:
logger.warning(
f"Fact not found in SQLite for user {user_id}: '{fact_to_delete}'"
)
return {
"status": "not_found",
"user_id": user_id,
"fact": fact_to_delete,
}
deleted_chroma_id = row[0]
# Delete from SQLite
await self._db_execute(
"DELETE FROM user_facts WHERE user_id = ? AND fact = ?",
(user_id, fact_to_delete),
)
logger.info(
f"Deleted fact from SQLite for user {user_id}: '{fact_to_delete}'"
)
# Delete from ChromaDB if chroma_id exists
if deleted_chroma_id and self.fact_collection:
try:
logger.info(
f"Attempting to delete fact from ChromaDB (ID: {deleted_chroma_id})."
)
await asyncio.to_thread(
self.fact_collection.delete, ids=[deleted_chroma_id]
)
logger.info(
f"Successfully deleted fact from ChromaDB (ID: {deleted_chroma_id})."
)
except Exception as chroma_e:
logger.error(
f"ChromaDB error deleting user fact ID {deleted_chroma_id}: {chroma_e}",
exc_info=True,
)
# Log error but consider SQLite deletion successful
return {
"status": "deleted",
"user_id": user_id,
"fact_deleted": fact_to_delete,
}
except Exception as e:
logger.error(f"Error deleting user fact for {user_id}: {e}", exc_info=True)
return {"error": f"Database error deleting user fact: {str(e)}"}
async def delete_general_fact(self, fact_to_delete: str) -> Dict[str, Any]:
"""Deletes a specific general fact from both SQLite and ChromaDB."""
if not fact_to_delete:
return {"error": "fact_to_delete is required."}
logger.info(f"Attempting to delete general fact: '{fact_to_delete}'")
deleted_chroma_id = None
try:
# Check if fact exists and get chroma_id
row = await self._db_fetchone(
"SELECT chroma_id FROM general_facts WHERE fact = ?", (fact_to_delete,)
)
if not row:
logger.warning(f"General fact not found in SQLite: '{fact_to_delete}'")
return {"status": "not_found", "fact": fact_to_delete}
deleted_chroma_id = row[0]
# Delete from SQLite
await self._db_execute(
"DELETE FROM general_facts WHERE fact = ?", (fact_to_delete,)
)
logger.info(f"Deleted general fact from SQLite: '{fact_to_delete}'")
# Delete from ChromaDB if chroma_id exists
if deleted_chroma_id and self.fact_collection:
try:
logger.info(
f"Attempting to delete general fact from ChromaDB (ID: {deleted_chroma_id})."
)
await asyncio.to_thread(
self.fact_collection.delete, ids=[deleted_chroma_id]
)
logger.info(
f"Successfully deleted general fact from ChromaDB (ID: {deleted_chroma_id})."
)
except Exception as chroma_e:
logger.error(
f"ChromaDB error deleting general fact ID {deleted_chroma_id}: {chroma_e}",
exc_info=True,
)
# Log error but consider SQLite deletion successful
return {"status": "deleted", "fact_deleted": fact_to_delete}
except Exception as e:
logger.error(f"Error deleting general fact: {e}", exc_info=True)
return {"error": f"Database error deleting general fact: {str(e)}"}
# --- Goal Management Methods (SQLite) ---
async def add_goal(
self,
description: str,
priority: int = 5,
details: Optional[Dict[str, Any]] = None,
guild_id: Optional[str] = None,
channel_id: Optional[str] = None,
user_id: Optional[str] = None,
) -> Dict[str, Any]:
"""Adds a new goal to the database, including context."""
if not description:
return {"error": "Goal description is required."}
logger.info(f"Adding new goal (Priority {priority}): '{description}'")
details_json = json.dumps(details) if details else None
try:
# Check if goal already exists
existing = await self._db_fetchone(
"SELECT goal_id FROM gurt_goals WHERE description = ?", (description,)
)
if existing:
logger.warning(
f"Goal already exists: '{description}' (ID: {existing[0]})"
)
return {
"status": "duplicate",
"goal_id": existing[0],
"description": description,
}
async with self.db_lock:
async with aiosqlite.connect(self.db_path) as db:
cursor = await db.execute(
"""
INSERT INTO gurt_goals (description, priority, details, status, last_updated, guild_id, channel_id, user_id)
VALUES (?, ?, ?, 'pending', unixepoch('now'), ?, ?, ?)
""",
(
description,
priority,
details_json,
guild_id,
channel_id,
user_id,
),
)
await db.commit()
goal_id = cursor.lastrowid
logger.info(f"Goal added successfully (ID: {goal_id}): '{description}'")
return {"status": "added", "goal_id": goal_id, "description": description}
except Exception as e:
logger.error(f"Error adding goal '{description}': {e}", exc_info=True)
return {"error": f"Database error adding goal: {str(e)}"}
async def get_goals(
self, status: Optional[str] = None, limit: int = 10
) -> List[Dict[str, Any]]:
"""Retrieves goals, optionally filtered by status, ordered by priority."""
logger.info(f"Retrieving goals (Status: {status or 'any'}, Limit: {limit})")
goals = []
try:
sql = "SELECT goal_id, description, status, priority, created_timestamp, last_updated, details, guild_id, channel_id, user_id FROM gurt_goals"
params = []
if status:
sql += " WHERE status = ?"
params.append(status)
sql += " ORDER BY priority ASC, created_timestamp ASC LIMIT ?"
params.append(limit)
rows = await self._db_fetchall(sql, tuple(params))
for row in rows:
details = json.loads(row[6]) if row[6] else None
goals.append(
{
"goal_id": row[0],
"description": row[1],
"status": row[2],
"priority": row[3],
"created_timestamp": row[4],
"last_updated": row[5],
"details": details,
"guild_id": row[7],
"channel_id": row[8],
"user_id": row[9],
}
)
logger.info(f"Retrieved {len(goals)} goals.")
return goals
except Exception as e:
logger.error(f"Error retrieving goals: {e}", exc_info=True)
return []
async def update_goal(
self,
goal_id: int,
status: Optional[str] = None,
priority: Optional[int] = None,
details: Optional[Dict[str, Any]] = None,
) -> Dict[str, Any]:
"""Updates the status, priority, or details of a goal."""
logger.info(
f"Updating goal ID {goal_id} (Status: {status}, Priority: {priority}, Details: {bool(details)})"
)
if not any([status, priority is not None, details is not None]):
return {"error": "No update parameters provided."}
updates = []
params = []
if status:
updates.append("status = ?")
params.append(status)
if priority is not None:
updates.append("priority = ?")
params.append(priority)
if details is not None:
updates.append("details = ?")
params.append(json.dumps(details))
updates.append("last_updated = unixepoch('now')")
params.append(goal_id)
sql = f"UPDATE gurt_goals SET {', '.join(updates)} WHERE goal_id = ?"
try:
async with self.db_lock:
async with aiosqlite.connect(self.db_path) as db:
cursor = await db.execute(sql, tuple(params))
await db.commit()
if cursor.rowcount == 0:
logger.warning(f"Goal ID {goal_id} not found for update.")
return {"status": "not_found", "goal_id": goal_id}
logger.info(f"Goal ID {goal_id} updated successfully.")
return {"status": "updated", "goal_id": goal_id}
except Exception as e:
logger.error(f"Error updating goal ID {goal_id}: {e}", exc_info=True)
return {"error": f"Database error updating goal: {str(e)}"}
async def delete_goal(self, goal_id: int) -> Dict[str, Any]:
"""Deletes a goal from the database."""
logger.info(f"Attempting to delete goal ID {goal_id}")
try:
async with self.db_lock:
async with aiosqlite.connect(self.db_path) as db:
cursor = await db.execute(
"DELETE FROM gurt_goals WHERE goal_id = ?", (goal_id,)
)
await db.commit()
if cursor.rowcount == 0:
logger.warning(f"Goal ID {goal_id} not found for deletion.")
return {"status": "not_found", "goal_id": goal_id}
logger.info(f"Goal ID {goal_id} deleted successfully.")
return {"status": "deleted", "goal_id": goal_id}
except Exception as e:
logger.error(f"Error deleting goal ID {goal_id}: {e}", exc_info=True)
return {"error": f"Database error deleting goal: {str(e)}"}
# --- Internal Action Log Methods ---
async def add_internal_action_log(
self,
tool_name: str,
arguments: Optional[Dict[str, Any]],
result_summary: str,
reasoning: Optional[str] = None,
) -> Dict[str, Any]:
"""Logs the execution of an internal background action, including reasoning."""
if not tool_name:
return {"error": "Tool name is required for logging internal action."}
logger.info(
f"Logging internal action: Tool='{tool_name}', Args={arguments}, Reason='{reasoning}', Result='{result_summary[:100]}...'"
)
args_json = json.dumps(arguments) if arguments else None
# Truncate result summary and reasoning if too long for DB
max_len = 1000
truncated_summary = result_summary[:max_len] + (
"..." if len(result_summary) > max_len else ""
)
truncated_reasoning = (
reasoning[:max_len]
+ ("..." if reasoning and len(reasoning) > max_len else "")
if reasoning
else None
)
try:
async with self.db_lock:
async with aiosqlite.connect(self.db_path) as db:
cursor = await db.execute(
"""
INSERT INTO internal_actions (tool_name, arguments_json, reasoning, result_summary, timestamp)
VALUES (?, ?, ?, ?, unixepoch('now'))
""",
(tool_name, args_json, truncated_reasoning, truncated_summary),
)
await db.commit()
action_id = cursor.lastrowid
logger.info(
f"Internal action logged successfully (ID: {action_id}): Tool='{tool_name}'"
)
return {"status": "logged", "action_id": action_id}
except Exception as e:
logger.error(
f"Error logging internal action '{tool_name}': {e}", exc_info=True
)
return {"error": f"Database error logging internal action: {str(e)}"}
async def get_internal_action_logs(self, limit: int = 10) -> List[Dict[str, Any]]:
"""Retrieves the most recent internal action logs."""
logger.info(f"Retrieving last {limit} internal action logs.")
logs = []
try:
rows = await self._db_fetchall(
"""
SELECT action_id, timestamp, tool_name, arguments_json, reasoning, result_summary
FROM internal_actions
ORDER BY timestamp DESC
LIMIT ?
""",
(limit,),
)
for row in rows:
arguments = json.loads(row[3]) if row[3] else None
logs.append(
{
"action_id": row[0],
"timestamp": row[1],
"tool_name": row[2],
"arguments": arguments,
"reasoning": row[4],
"result_summary": row[5],
}
)
logger.info(f"Retrieved {len(logs)} internal action logs.")
return logs
except Exception as e:
logger.error(f"Error retrieving internal action logs: {e}", exc_info=True)
return []
# --- Add the new method below ---
async def clear_internal_action_logs(self) -> Dict[str, Any]:
"""Deletes all records from the internal_actions table."""
logger.info("Attempting to clear all internal action logs.")
try:
await self._db_execute("DELETE FROM internal_actions")
# Optionally, reset the autoincrement sequence if using SQLite
# await self._db_execute("DELETE FROM sqlite_sequence WHERE name='internal_actions'")
logger.info("Successfully cleared all internal action logs.")
return {"status": "cleared"}
except Exception as e:
logger.error(f"Error clearing internal action logs: {e}", exc_info=True)
return {"error": f"Database error clearing internal action logs: {str(e)}"}