discordbot/download_illustrious.py
2025-06-05 21:31:06 -06:00

329 lines
12 KiB
Python

import os
import sys
import requests
import json
import zipfile
import shutil
import argparse
from tqdm import tqdm
import time
import subprocess
import huggingface_hub
# Illustrious XL model information
MODEL_ID = 795765
MODEL_NAME = "Illustrious XL"
MODEL_VERSION = 1 # Version 1.0
MODEL_URL = "https://civitai.com/api/download/models/795765"
MODEL_INFO_URL = f"https://civitai.com/api/v1/models/{MODEL_ID}"
# Base SDXL model from HuggingFace (we'll use this as a base and replace the unet)
SDXL_BASE_MODEL = "stabilityai/stable-diffusion-xl-base-1.0"
def download_file(url, destination, filename=None):
"""Download a file with progress bar"""
if filename is None:
local_filename = os.path.join(destination, url.split("/")[-1])
else:
local_filename = os.path.join(destination, filename)
with requests.get(url, stream=True) as r:
r.raise_for_status()
total_size = int(r.headers.get("content-length", 0))
# Create directory if it doesn't exist
os.makedirs(os.path.dirname(local_filename), exist_ok=True)
with open(local_filename, "wb") as f:
with tqdm(
total=total_size,
unit="B",
unit_scale=True,
desc=f"Downloading {os.path.basename(local_filename)}",
) as pbar:
for chunk in r.iter_content(chunk_size=8192):
if chunk:
f.write(chunk)
pbar.update(len(chunk))
return local_filename
def download_from_huggingface(repo_id, local_dir, component=None):
"""Download a model from HuggingFace"""
try:
# Use huggingface_hub to download the model
if component:
print(f"Downloading {component} from {repo_id}...")
huggingface_hub.snapshot_download(
repo_id=repo_id,
local_dir=local_dir,
local_dir_use_symlinks=False,
allow_patterns=f"{component}/*",
)
else:
print(f"Downloading full model from {repo_id}...")
huggingface_hub.snapshot_download(
repo_id=repo_id, local_dir=local_dir, local_dir_use_symlinks=False
)
return True
except Exception as e:
print(f"Error downloading from HuggingFace: {e}")
return False
def download_illustrious_xl():
"""Download and set up the Illustrious XL model"""
# Set up directories
script_dir = os.path.dirname(os.path.abspath(__file__))
models_dir = os.path.join(script_dir, "models")
illustrious_dir = os.path.join(models_dir, "illustrious_xl")
temp_dir = os.path.join(models_dir, "temp")
# Create directories if they don't exist
os.makedirs(models_dir, exist_ok=True)
os.makedirs(temp_dir, exist_ok=True)
# Check if model already exists
if (
os.path.exists(
os.path.join(illustrious_dir, "unet", "diffusion_pytorch_model.safetensors")
)
and os.path.getsize(
os.path.join(illustrious_dir, "unet", "diffusion_pytorch_model.safetensors")
)
> 100000000
): # Check if file is larger than 100MB
print(f"⚠️ {MODEL_NAME} model already exists at {illustrious_dir}")
choice = input("Do you want to re-download and reinstall the model? (y/n): ")
if choice.lower() != "y":
print("Download cancelled.")
return
# Remove existing model
print(f"Removing existing {MODEL_NAME} model...")
shutil.rmtree(illustrious_dir, ignore_errors=True)
# Create illustrious directory
os.makedirs(illustrious_dir, exist_ok=True)
# Get model info from Civitai API
print(f"Fetching information about {MODEL_NAME} from Civitai...")
try:
response = requests.get(MODEL_INFO_URL)
response.raise_for_status()
model_info = response.json()
# Save model info for reference
with open(os.path.join(illustrious_dir, "model_info.json"), "w") as f:
json.dump(model_info, f, indent=2)
print(f"Model: {model_info['name']} by {model_info['creator']['username']}")
if "description" in model_info:
print(f"Description: {model_info['description'][:100]}...")
except Exception as e:
print(f"⚠️ Failed to fetch model info: {e}")
print("Continuing with download anyway...")
# First, download the base SDXL model from HuggingFace
print(f"Step 1: Downloading base SDXL model from HuggingFace...")
print(
"This will download the VAE, text encoders, and tokenizers needed for the model."
)
print("This may take a while (several GB of data)...")
# Download each component separately to avoid downloading the full model
components = [
"vae",
"text_encoder",
"text_encoder_2",
"tokenizer",
"tokenizer_2",
"scheduler",
]
for component in components:
success = download_from_huggingface(SDXL_BASE_MODEL, illustrious_dir, component)
if not success:
print(f"Failed to download {component} from HuggingFace.")
print("Trying alternative method...")
# Try using diffusers to download the model
try:
print(f"Installing diffusers if not already installed...")
subprocess.check_call(
[sys.executable, "-m", "pip", "install", "diffusers"]
)
# Use Python to download the model components
from diffusers import StableDiffusionXLPipeline
print(f"Downloading {component} using diffusers...")
# Create a temporary directory for the download
temp_model_dir = os.path.join(temp_dir, "sdxl_base")
os.makedirs(temp_model_dir, exist_ok=True)
# Download only the specified components
StableDiffusionXLPipeline.from_pretrained(
SDXL_BASE_MODEL,
torch_dtype="float16",
variant="fp16",
use_safetensors=True,
cache_dir=temp_model_dir,
)
# Copy the component to the illustrious directory
component_dir = os.path.join(temp_model_dir, component)
if os.path.exists(component_dir):
shutil.copytree(
component_dir,
os.path.join(illustrious_dir, component),
dirs_exist_ok=True,
)
print(f"Successfully copied {component} to {illustrious_dir}")
else:
print(f"Could not find {component} in downloaded model.")
except Exception as e:
print(f"Error using diffusers to download {component}: {e}")
print(
"You may need to manually download the SDXL base model and copy the components."
)
# Now download the Illustrious XL model from Civitai
print(f"\nStep 2: Downloading {MODEL_NAME} from Civitai...")
try:
# Download to temp directory
model_file = download_file(MODEL_URL, temp_dir, "illustrious_xl.safetensors")
# Create the unet directory if it doesn't exist
os.makedirs(os.path.join(illustrious_dir, "unet"), exist_ok=True)
# Move the model file to the unet directory
print(f"Moving {MODEL_NAME} model to the unet directory...")
shutil.move(
model_file,
os.path.join(
illustrious_dir, "unet", "diffusion_pytorch_model.safetensors"
),
)
# Create a model_index.json file
print("Creating model_index.json file...")
model_index = {
"_class_name": "StableDiffusionXLPipeline",
"_diffusers_version": "0.21.4",
"force_zeros_for_empty_prompt": True,
"scheduler": {
"_class_name": "DPMSolverMultistepScheduler",
"_diffusers_version": "0.21.4",
"beta_end": 0.012,
"beta_schedule": "scaled_linear",
"beta_start": 0.00085,
"num_train_timesteps": 1000,
"prediction_type": "epsilon",
"solver_order": 2,
"solver_type": "midpoint",
"thresholding": False,
"timestep_spacing": "leading",
"trained_betas": None,
"use_karras_sigmas": True,
},
"text_encoder": [
{"_class_name": "CLIPTextModel", "_diffusers_version": "0.21.4"},
{
"_class_name": "CLIPTextModelWithProjection",
"_diffusers_version": "0.21.4",
},
],
"tokenizer": [
{"_class_name": "CLIPTokenizer", "_diffusers_version": "0.21.4"},
{"_class_name": "CLIPTokenizer", "_diffusers_version": "0.21.4"},
],
"unet": {
"_class_name": "UNet2DConditionModel",
"_diffusers_version": "0.21.4",
},
"vae": {"_class_name": "AutoencoderKL", "_diffusers_version": "0.21.4"},
}
with open(os.path.join(illustrious_dir, "model_index.json"), "w") as f:
json.dump(model_index, f, indent=2)
# Create a README.md file with information about the model
with open(os.path.join(illustrious_dir, "README.md"), "w") as f:
f.write(f"# {MODEL_NAME}\n\n")
f.write(
f"Downloaded from Civitai: https://civitai.com/models/{MODEL_ID}\n\n"
)
f.write("This model requires the diffusers library to use.\n")
f.write(
"Use the /generate command in the Discord bot to generate images with this model.\n"
)
# Check if the model file is large enough (should be several GB)
unet_file = os.path.join(
illustrious_dir, "unet", "diffusion_pytorch_model.safetensors"
)
if os.path.exists(unet_file):
file_size_gb = os.path.getsize(unet_file) / (1024 * 1024 * 1024)
print(f"Model file size: {file_size_gb:.2f} GB")
if file_size_gb < 1.0:
print(
f"⚠️ Warning: Model file seems too small ({file_size_gb:.2f} GB). It may not be complete."
)
print(
"The download might have been interrupted or the model might not be the full version."
)
print("You may want to try downloading again with the --force flag.")
print(f"\n{MODEL_NAME} model has been downloaded and set up successfully!")
print(f"Model location: {illustrious_dir}")
print(
"You can now use the model with the /generate command in the Discord bot."
)
except Exception as e:
print(f"❌ Error downloading or setting up the model: {e}")
import traceback
traceback.print_exc()
# Clean up
print("Cleaning up...")
shutil.rmtree(illustrious_dir, ignore_errors=True)
shutil.rmtree(temp_dir, ignore_errors=True)
print("Download failed. Please try again later.")
return False
# Clean up temp directory
shutil.rmtree(temp_dir, ignore_errors=True)
return True
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description=f"Download and set up the {MODEL_NAME} model from Civitai"
)
parser.add_argument(
"--force",
action="store_true",
help="Force download even if the model already exists",
)
args = parser.parse_args()
if args.force:
# Remove existing model if it exists
script_dir = os.path.dirname(os.path.abspath(__file__))
illustrious_dir = os.path.join(script_dir, "models", "illustrious_xl")
if os.path.exists(illustrious_dir):
print(f"Removing existing {MODEL_NAME} model...")
shutil.rmtree(illustrious_dir, ignore_errors=True)
download_illustrious_xl()