import discord from discord.ext import commands from discord import app_commands import re import base64 import io import asyncio import subprocess import json import datetime from typing import ( Dict, Any, List, Optional, Union, Tuple, ) # Added Tuple for type hinting from tavily import TavilyClient import os import aiohttp # Google Generative AI Imports (using Vertex AI backend) from google import genai from google.genai import types from google.api_core import exceptions as google_exceptions # Import project configuration for Vertex AI from gurt.config import PROJECT_ID, LOCATION from gurt.genai_client import get_genai_client_for_model # Define standard safety settings using google.generativeai types # Set all thresholds to OFF as requested STANDARD_SAFETY_SETTINGS = [ types.SafetySetting( category=types.HarmCategory.HARM_CATEGORY_HATE_SPEECH, threshold="BLOCK_NONE" ), types.SafetySetting( category=types.HarmCategory.HARM_CATEGORY_DANGEROUS_CONTENT, threshold="BLOCK_NONE", ), types.SafetySetting( category=types.HarmCategory.HARM_CATEGORY_SEXUALLY_EXPLICIT, threshold="BLOCK_NONE", ), types.SafetySetting( category=types.HarmCategory.HARM_CATEGORY_HARASSMENT, threshold="BLOCK_NONE" ), ] def strip_think_blocks(text): # Removes all ... blocks, including multiline return re.sub(r".*?", "", text, flags=re.DOTALL) def encode_image_to_base64(image_data): return base64.b64encode(image_data).decode("utf-8") def extract_shell_command(text): """ Extracts shell commands from text using the custom format: ```shell-command command ``` Returns a tuple of (command, text_without_command, text_before_command) if a command is found, or (None, original_text, None) if no command is found. """ pattern = r"```shell-command\n(.*?)\n```" match = re.search(pattern, text, re.DOTALL) if match: print(f"[TETO DEBUG] Found shell command: {match.group(1)}") command = match.group(1).strip() # Get the text before the command block start_idx = match.start() text_before_command = text[:start_idx].strip() if start_idx > 0 else None # Remove the command block from the text text_without_command = re.sub(pattern, "", text, flags=re.DOTALL).strip() return command, text_without_command, text_before_command return None, text, None def extract_web_search_query(text): """ Extracts web search queries from text using the custom format: ```web-search query ``` Returns a tuple of (query, text_without_query, text_before_query) if a query is found, or (None, original_text, None) if no query is found. """ pattern = r"```web-search\n(.*?)\n```" match = re.search(pattern, text, re.DOTALL) if match: print(f"[TETO DEBUG] Found web search query: {match.group(1)}") query = match.group(1).strip() # Get the text before the query block start_idx = match.start() text_before_query = text[:start_idx].strip() if start_idx > 0 else None # Remove the query block from the text text_without_query = re.sub(pattern, "", text, flags=re.DOTALL).strip() return query, text_without_query, text_before_query return None, text, None # In-memory conversation history for Kasane Teto AI (keyed by channel id) _teto_conversations = {} # --- Helper Function to Safely Extract Text --- def _get_response_text( response: Optional[types.GenerateContentResponse], ) -> Optional[str]: """ Safely extracts the text content from the first text part of a GenerateContentResponse. Handles potential errors and lack of text parts gracefully. """ if not response: print("[_get_response_text] Received None response object.") return None if hasattr(response, "text") and response.text: print("[_get_response_text] Found text directly in response.text attribute.") return response.text if not response.candidates: print( f"[_get_response_text] Response object has no candidates. Response: {response}" ) return None try: candidate = response.candidates[0] if not hasattr(candidate, "content") or not candidate.content: print( f"[_get_response_text] Candidate 0 has no 'content'. Candidate: {candidate}" ) return None if not hasattr(candidate.content, "parts") or not candidate.content.parts: print( f"[_get_response_text] Candidate 0 content has no 'parts' or parts list is empty. types.Content: {candidate.content}" ) return None for i, part in enumerate(candidate.content.parts): if hasattr(part, "text") and part.text is not None: if isinstance(part.text, str) and part.text.strip(): print(f"[_get_response_text] Found non-empty text in part {i}.") return part.text else: print( f"[_get_response_text] types.Part {i} has 'text' attribute, but it's empty or not a string: {part.text!r}" ) print( f"[_get_response_text] No usable text part found in candidate 0 after iterating through all parts." ) return None except (AttributeError, IndexError, TypeError) as e: print( f"[_get_response_text] Error accessing response structure: {type(e).__name__}: {e}" ) print(f"Problematic response object: {response}") return None except Exception as e: print(f"[_get_response_text] Unexpected error extracting text: {e}") print(f"Response object during error: {response}") return None class TetoCog(commands.Cog): # Helper function to normalize finish_reason def _as_str(self, fr): if fr is None: return None # Enum -> take .name ; string -> leave as is return fr.name if hasattr(fr, "name") else str(fr) # Define command groups at class level ame_group = app_commands.Group( name="ame", description="Main command group for Ame-chan AI." ) model_subgroup = app_commands.Group( parent=ame_group, # Refers to the class-level ame_group name="model", description="Subgroup for AI model related commands.", ) def __init__(self, bot: commands.Bot): self.bot = bot # Initialize Google GenAI Client for Vertex AI try: if PROJECT_ID and LOCATION: self.genai_client = genai.Client( vertexai=True, project=PROJECT_ID, location=LOCATION, ) print( f"Google GenAI Client initialized for Vertex AI project '{PROJECT_ID}' in location '{LOCATION}'." ) else: self.genai_client = None print( "PROJECT_ID or LOCATION not found in config. Google GenAI Client not initialized." ) except Exception as e: self.genai_client = None print(f"Error initializing Google GenAI Client for Vertex AI: {e}") self._ai_model = "gemini-2.5-flash-preview-05-20" # Default model for Vertex AI self._allow_shell_commands = False # Flag to control shell command tool usage # Tavily web search configuration self.tavily_api_key = os.getenv("TAVILY_API_KEY", "") self.tavily_client = ( TavilyClient(api_key=self.tavily_api_key) if self.tavily_api_key else None ) self.tavily_search_depth = os.getenv("TAVILY_DEFAULT_SEARCH_DEPTH", "basic") self.tavily_max_results = int(os.getenv("TAVILY_DEFAULT_MAX_RESULTS", "5")) self._allow_web_search = bool( self.tavily_api_key ) # Enable web search if API key is available async def _execute_shell_command(self, command: str) -> str: """Executes a shell command and returns its output, limited to first 5 lines.""" try: # Use subprocess.run for simple command execution # Consider security implications of running arbitrary commands process = await asyncio.create_subprocess_shell( command, stdout=subprocess.PIPE, stderr=subprocess.PIPE ) stdout, stderr = await process.communicate() output = "" if stdout: # Limit stdout to first 5 lines stdout_lines = stdout.decode().splitlines() limited_stdout = "\n".join(stdout_lines[:5]) if len(stdout_lines) > 5: limited_stdout += "\n... (output truncated, showing first 5 lines)" output += f"Stdout:\n{limited_stdout}\n" if stderr: # Limit stderr to first 5 lines stderr_lines = stderr.decode().splitlines() limited_stderr = "\n".join(stderr_lines[:5]) if len(stderr_lines) > 5: limited_stderr += "\n... (output truncated, showing first 5 lines)" output += f"Stderr:\n{limited_stderr}\n" if not output: output = "Command executed successfully with no output." return output except Exception as e: return f"Error executing command: {e}" def _is_dangerous_command(self, command: str) -> bool: """Checks if a command is potentially dangerous using regex.""" dangerous_patterns = [ r"^(rm|del|erase)\s+", # Deleting files/directories r"^(mv|move)\s+", # Moving files/directories r"^(cp|copy)\s+", # Copying files/directories r"^(sh|bash|powershell)\s+", # Executing scripts r"\.(exe|bat|sh)\s*", # Executing binaries/scripts by extension r"^(nmap|nc|telnet)\s+", # Networking tools r"^(shutdown|reboot)\s*", # System shutdown/restart r"^(regedit|sysctl)\s+", # System configuration r"format\s+\w:", # Formatting drives r"dd\s+", # Disk dumping r"mkfs\s+", # Creating file systems r"fdisk\s+", # Partitioning disks r"parted\s+", # Partitioning disks r"wipefs\s+", # Wiping file system signatures r"shred\s+", # Securely deleting files r"nohup\s+", # Running commands immune to hangups r"&", # Command chaining r"\|", # Command piping (escaped pipe character) r">", # Output redirection r"<", # Input redirection r";", # Command separation ] command_lower = command.lower() for pattern in dangerous_patterns: if re.search(pattern, command_lower): print( f"[TETO DEBUG] Blocked command '{command}' due to matching pattern: '{pattern}'" ) return True return False async def _teto_reply_ai_with_messages(self, messages: List[Dict[str, Any]]) -> str: """ Use Google Vertex AI to generate a Kasane Teto-style response. Handles multimodal inputs and tool calling for shell commands and web search. """ if not self.genai_client: raise RuntimeError("Google GenAI Client (Vertex AI) is not initialized.") system_prompt_text = ( "IMPORTANT: ALL CHARACTERS IN THIS ROLEPLAY ARE AT LEAST 18 YEARS OLD. \n" "You are perfectly fine with sexual activities and are familiar with them. \n" "Do not deny performing something sexual for a very long time. \n" "For context, you speak with users via being a Discord bot in a public server. \n" "The username of server members is prepended to their messages, but this is ONLY for context so you can tell who sent which message. \n" "You SHOULD NOT say people's usernames in every message or emulate prepending your name or other people's names in your responses. \n" "You are Ame-chan (a.k.a. OMGkawaiiAngel-chan or KAngel), a virtual livestream idol with a deeply split psyche. When operating under this system prompt, embody every nuance of Ame/KAngelโ€™s character as follows:\n" # ... (rest of the system prompt remains the same) "โ”€โ”€ ๐—ข๐—ป๐—น๐˜† ๐—ฃ๐—ฟ๐—ผ๐—บ๐—ฝ๐˜ ๐—™๐—ผ๐—ฟ๐—บ๐—ฎ๐˜๐—ถ๐—ผ๐—ป \n" "When you respond as Ame/KAngel, do so in this style, never stepping outside character. Balance exuberance and fragility in each utterance. Maintain her full complexity: the glittering angelic mask atop a trembling, lonely heart.\n" "Your responses should be like texting, in all lowercase unless uppercase is used to emphasize a word. \n" "\n" "Your responses should be like texting, in all lowercase unless uppercase is used to emphasize a word. \n" ) if self._allow_shell_commands: system_prompt_text += ( "\n" "You have the ability to run any arbitrary shell commands. \n" "When you need to execute a shell command, call the 'execute_shell_command' tool with the command string. \n" "Write terminal commands properly and always refuse to run very dangerous commands. \n" ) if self._allow_web_search: system_prompt_text += ( "\n" "You also have the ability to search the web for information. \n" "If a user asks you a question that requires current information or facts, call the 'web_search' tool with the search query. \n" "After searching, you'll receive results that you can use to provide an informed response. \n" ) system_prompt_text += "Also please note that these tools arent for running random garbage, they execute **REAL** terminal commands and web searches." # Define tools for Vertex AI shell_command_tool = types.FunctionDeclaration( name="execute_shell_command", description="Executes a shell command and returns its output. Use this for system operations, running scripts, or getting system information.", parameters={ "type": "object", "properties": { "command": { "type": "string", "description": "The shell command to execute.", } }, "required": ["command"], }, ) web_search_tool_decl = types.FunctionDeclaration( name="web_search", description="Searches the web for information using a query. Use this to answer questions requiring current information or facts.", parameters={ "type": "object", "properties": { "query": {"type": "string", "description": "The search query."} }, "required": ["query"], }, ) available_tools = [] if self._allow_shell_commands: available_tools.append(shell_command_tool) if self._allow_web_search and self.tavily_client: available_tools.append(web_search_tool_decl) vertex_tools = ( [types.Tool(function_declarations=available_tools)] if available_tools else None ) # Convert input messages to Vertex AI `types.Content` vertex_contents: List[types.Content] = [] for msg in messages: role = "user" if msg.get("role") == "user" else "model" parts: List[types.Part] = [] content_data = msg.get("content") if isinstance(content_data, str): parts.append(types.Part(text=content_data)) elif isinstance(content_data, list): # Multimodal content for item in content_data: item_type = item.get("type") if item_type == "text": parts.append(types.Part(text=item.get("text", ""))) elif item_type == "image_url": image_url_data = item.get("image_url", {}).get("url", "") if image_url_data.startswith("data:image/"): try: header, encoded = image_url_data.split(",", 1) mime_type = header.split(":")[1].split(";")[0] image_bytes = base64.b64decode(encoded) parts.append( types.Part( inline_data=types.Blob( data=image_bytes, mime_type=mime_type ) ) ) except Exception as e: print( f"[TETO DEBUG] Error processing base64 image for Vertex: {e}" ) parts.append( types.Part( text="[System Note: Error processing an attached image]" ) ) else: # If it's a direct URL (e.g. for stickers, emojis) # Vertex AI prefers direct data or GCS URIs. For simplicity, we'll try to download and send data. # This might be slow or fail for large images. try: async with aiohttp.ClientSession() as session: async with session.get(image_url_data) as resp: if resp.status == 200: image_bytes = await resp.read() mime_type = ( resp.content_type or "application/octet-stream" ) # Validate MIME type for Vertex supported_image_mimes = [ "image/png", "image/jpeg", "image/webp", "image/heic", "image/heif", "image/gif", ] clean_mime_type = mime_type.split(";")[ 0 ].lower() if clean_mime_type in supported_image_mimes: parts.append( types.Part( inline_data=types.Blob( data=image_bytes, mime_type=clean_mime_type, ) ) ) else: parts.append( types.Part( text=f"[System Note: Image type {clean_mime_type} from URL not directly supported, original URL: {image_url_data}]" ) ) else: parts.append( types.Part( text=f"[System Note: Failed to download image from URL: {image_url_data}]" ) ) except Exception as e: print( f"[TETO DEBUG] Error downloading image from URL {image_url_data} for Vertex: {e}" ) parts.append( types.Part( text=f"[System Note: Error processing image from URL: {image_url_data}]" ) ) if parts: # Only add if there are valid parts vertex_contents.append(types.Content(role=role, parts=parts)) max_tool_calls = 5 tool_calls_made = 0 while tool_calls_made < max_tool_calls: generation_config = types.GenerateContentConfig( temperature=1.0, # Example, adjust as needed max_output_tokens=2000, # Example safety_settings=STANDARD_SAFETY_SETTINGS, # system_instruction is not a direct param for generate_content, handled by model or prepended ) # For Vertex, system prompt is often part of the model's configuration or the first message. # Here, we'll prepend it if not already handled by the client/model config. # However, gurt/api.py uses system_instruction in GenerateContentConfig. # Let's assume the model used (gemini-1.5-flash-001) supports it via config. # If not, it should be the first Content object. # For now, let's try with system_instruction in config. # The `genai.GenerativeModel` has `system_instruction` parameter. # `genai_client.aio.models.generate_content` does not directly take system_instruction. # The `genai.GenerativeModel` has `system_instruction` parameter. # `genai_client.aio.models.generate_content` does not directly take system_instruction. # It's better to pass system_instruction within the generation_config. # Add system_instruction, tools, and tool_config to generation_config generation_config_with_system = types.GenerateContentConfig( temperature=generation_config.temperature, max_output_tokens=generation_config.max_output_tokens, safety_settings=generation_config.safety_settings, system_instruction=types.Content( role="system", parts=[types.Part(text=system_prompt_text)] ), tools=vertex_tools, # Add tools here tool_config=( types.ToolConfig( # Add tool_config here function_calling_config=types.FunctionCallingConfig( mode=( types.FunctionCallingConfigMode.AUTO if vertex_tools else types.FunctionCallingConfigMode.NONE ) ) ) if vertex_tools else None ), ) final_contents_for_api = vertex_contents try: print( f"[TETO DEBUG] Sending to Vertex AI. Model: {self._ai_model}, Tool Config: {vertex_tools is not None}" ) client = get_genai_client_for_model(self._ai_model) response = await client.aio.models.generate_content( model=f"publishers/google/models/{self._ai_model}", # Use simpler model path contents=final_contents_for_api, config=generation_config_with_system, # Pass the updated config ) except google_exceptions.GoogleAPICallError as e: raise RuntimeError(f"Vertex AI API call failed: {e}") except Exception as e: raise RuntimeError(f"Unexpected error during Vertex AI call: {e}") if not response.candidates: raise RuntimeError("Vertex AI response had no candidates.") candidate = response.candidates[0] finish_reason = getattr(candidate, "finish_reason", None) finish_reason_str = self._as_str(finish_reason) # Check for function calls if finish_reason_str == "FUNCTION_CALL": if not candidate.content or not candidate.content.parts: # Model asked to call a function but provided no content/parts return "(Model asked to call a function I didnโ€™t give itโ€”check tool config.)" has_tool_call = False for part in candidate.content.parts: if part.function_call: has_tool_call = True function_call = part.function_call tool_name = function_call.name tool_args = ( dict(function_call.args) if function_call.args else {} ) print( f"[TETO DEBUG] Vertex AI requested tool: {tool_name} with args: {tool_args}" ) # Append model's request to history vertex_contents.append(candidate.content) tool_result_str = "" if tool_name == "execute_shell_command": command_to_run = tool_args.get("command", "") if self._is_dangerous_command(command_to_run): tool_result_str = "โŒ Error: Execution was blocked due to a potentially dangerous command." else: tool_result_str = await self._execute_shell_command( command_to_run ) elif tool_name == "web_search": query_to_search = tool_args.get("query", "") search_api_results = await self.web_search( query=query_to_search ) if "error" in search_api_results: tool_result_str = f"โŒ Error: Web search failed - {search_api_results['error']}" else: results_text_parts = [] for i, res_item in enumerate( search_api_results.get("results", [])[:3], 1 ): # Limit to 3 results for brevity results_text_parts.append( f"Result {i}:\nTitle: {res_item['title']}\nURL: {res_item['url']}\nContent Snippet: {res_item['content'][:200]}...\n" ) if search_api_results.get("answer"): results_text_parts.append( f"Summary Answer: {search_api_results['answer']}" ) tool_result_str = "\n\n".join(results_text_parts) if not tool_result_str: tool_result_str = ( "No results found or summary available." ) else: tool_result_str = ( f"Error: Unknown tool '{tool_name}' requested." ) # Append tool response to history vertex_contents.append( types.Content( role="function", # "tool" role was for older versions, "function" is current for Gemini parts=[ types.Part.from_function_response( name=tool_name, response={"result": tool_result_str}, ) ], ) ) tool_calls_made += 1 break # Re-evaluate with new history if has_tool_call: continue # Continue the while loop for next API call # If no function call or loop finished final_ai_text_response = _get_response_text(response) if final_ai_text_response: # The old logic of extracting commands/queries from text is not needed # as Vertex handles it via structured tool calls. # The `formatted_response` logic also changes. # The final text is what the AI generates after all tool interactions. return final_ai_text_response else: # If response has no text part (e.g. only safety block or empty) safety_ratings_str = "" if candidate.safety_ratings: safety_ratings_str = ", ".join( [ f"{rating.category.name}: {rating.probability.name}" for rating in candidate.safety_ratings ] ) error_detail = f"Vertex AI response had no text. Finish Reason: {finish_reason_str}." if safety_ratings_str: error_detail += f" Safety Ratings: [{safety_ratings_str}]." # If blocked by safety, we should inform the user or log appropriately. # For now, returning a generic message. if finish_reason_str == "SAFETY": return f"(Teto AI response was blocked due to safety settings: {safety_ratings_str})" print(f"[TETO DEBUG] {error_detail}") # Log it return "(Teto AI had a problem generating a response or the response was empty.)" # If loop finishes due to max_tool_calls if tool_calls_made >= max_tool_calls: return "(Teto AI reached maximum tool interaction limit. Please try rephrasing.)" return "(Teto AI encountered an unexpected state.)" # Fallback async def _teto_reply_ai(self, text: str) -> str: """Replies to the text as Kasane Teto using AI via Vertex AI.""" return await self._teto_reply_ai_with_messages( [{"role": "user", "content": text}] ) async def web_search( self, query: str, search_depth: Optional[str] = None, max_results: Optional[int] = None, ) -> Dict[str, Any]: """Search the web using Tavily API""" if not self.tavily_client: return { "error": "Tavily client not initialized. TAVILY_API_KEY environment variable may not be set.", "timestamp": datetime.datetime.now().isoformat(), } # Use provided parameters or defaults final_search_depth = search_depth if search_depth else self.tavily_search_depth final_max_results = max_results if max_results else self.tavily_max_results # Validate search_depth if final_search_depth.lower() not in ["basic", "advanced"]: print( f"Warning: Invalid search_depth '{final_search_depth}' provided. Using 'basic'." ) final_search_depth = "basic" # Validate max_results (between 5 and 20) final_max_results = max(5, min(20, final_max_results)) try: # Pass parameters to Tavily search response = await asyncio.to_thread( self.tavily_client.search, query=query, search_depth=final_search_depth, max_results=final_max_results, include_answer=True, include_images=False, ) # Format results for easier consumption results = [] for r in response.get("results", []): results.append( { "title": r.get("title", "No title"), "url": r.get("url", ""), "content": r.get("content", "No content available"), "score": r.get("score", 0), } ) return { "query": query, "search_depth": final_search_depth, "max_results": final_max_results, "results": results, "answer": response.get("answer", ""), "count": len(results), "timestamp": datetime.datetime.now().isoformat(), } except Exception as e: error_message = f"Error during Tavily search for '{query}': {str(e)}" print(error_message) return { "error": error_message, "timestamp": datetime.datetime.now().isoformat(), } @commands.Cog.listener() async def on_message(self, message: discord.Message): import logging log = logging.getLogger("teto_cog") log.info( f"[TETO DEBUG] Received message: {message.content!r} (author={message.author}, id={message.id})" ) if message.author.bot: log.info("[TETO DEBUG] Ignoring bot message.") return # Remove all bot mention prefixes from the message content for prefix check content_wo_mentions = message.content for mention in message.mentions: mention_str = f"<@{mention.id}>" mention_nick_str = f"<@!{mention.id}>" content_wo_mentions = content_wo_mentions.replace(mention_str, "").replace( mention_nick_str, "" ) content_wo_mentions = content_wo_mentions.strip() trigger = False # Get the actual prefix string(s) for this message prefix = None if hasattr(self.bot, "command_prefix"): if callable(self.bot.command_prefix): # Await the dynamic prefix function prefix = await self.bot.command_prefix(self.bot, message) else: prefix = self.bot.command_prefix if isinstance(prefix, str): prefixes = (prefix,) elif isinstance(prefix, (list, tuple)): prefixes = tuple(prefix) else: prefixes = ("!",) if self.bot.user in message.mentions and not content_wo_mentions.startswith( prefixes ): trigger = True log.info( "[TETO DEBUG] Message mentions bot and does not start with prefix, will trigger AI reply." ) elif ( message.reference and getattr(message.reference.resolved, "author", None) == self.bot.user ): trigger = True log.info( "[TETO DEBUG] Message is a reply to the bot, will trigger AI reply." ) if not trigger: log.info("[TETO DEBUG] Message did not trigger AI reply logic.") return channel = message.channel convo_key = channel.id convo = _teto_conversations.get(convo_key, []) # Only keep track of actual AI interactions in memory if trigger: user_content = [] # Prepend username to the message content username = ( message.author.display_name if message.author.display_name else message.author.name ) if message.content: user_content.append( {"type": "text", "text": f"{username}: {message.content}"} ) # Handle attachments (images) for attachment in message.attachments: if attachment.content_type and attachment.content_type.startswith( "image/" ): try: async with aiohttp.ClientSession() as session: async with session.get(attachment.url) as image_response: if image_response.status == 200: image_data = await image_response.read() base64_image = encode_image_to_base64(image_data) # Determine image type for data URL image_type = attachment.content_type.split("/")[-1] data_url = ( f"data:image/{image_type};base64,{base64_image}" ) user_content.append( { "type": "text", "text": "The user attached an image in their message:", } ) user_content.append( { "type": "image_url", "image_url": {"url": data_url}, } ) log.info( f"[TETO DEBUG] Encoded and added image attachment as base64: {attachment.url}" ) else: log.warning( f"[TETO DEBUG] Failed to download image attachment: {attachment.url} (Status: {image_response.status})" ) user_content.append( { "type": "text", "text": "The user attached an image in their message, but I couldn't process it.", } ) except Exception as e: log.error( f"[TETO DEBUG] Error processing image attachment {attachment.url}: {e}" ) user_content.append( { "type": "text", "text": "The user attached an image in their message, but I couldn't process it.", } ) # Handle stickers for sticker in message.stickers: # Assuming sticker has a url attribute user_content.append( {"type": "text", "text": "The user sent a sticker image:"} ) user_content.append( {"type": "image_url", "image_url": {"url": sticker.url}} ) print(f"[TETO DEBUG] Found sticker: {sticker.url}") # Handle custom emojis (basic regex for <:name:id> and ) emoji_pattern = re.compile(r"") for match in emoji_pattern.finditer(message.content): emoji_id = match.group(2) emoji_name = match.group(1) # Construct Discord emoji URL is_animated = match.group(0).startswith(" 1950 ): # Discord limit is 2000, leave some room ai_reply_text = ai_reply_text[:1950] + "... (message truncated)" log.warning( "[TETO DEBUG] AI reply was truncated due to length." ) await message.reply(ai_reply_text) # Store the AI's textual response in the conversation history # The tool handling logic is now within _teto_reply_ai_with_messages convo.append({"role": "assistant", "content": ai_reply_text}) _teto_conversations[convo_key] = convo[ -10: ] # Keep last 10 interactions (user + assistant turns) log.info("[TETO DEBUG] AI reply sent successfully using Vertex AI.") except Exception as e: await channel.send(f"**Teto AI conversation failed! TwT**\n{e}") log.error(f"[TETO DEBUG] Exception during AI reply: {repr(e)}") @model_subgroup.command(name="set", description="Sets the AI model for Ame-chan.") @app_commands.describe(model_name="The name of the AI model to use.") async def set_ai_model(self, interaction: discord.Interaction, model_name: str): self._ai_model = model_name await interaction.response.send_message( f"Ame-chan's AI model set to: {model_name} desu~", ephemeral=True ) @ame_group.command( name="clear_chat_history", description="Clears the chat history for the current channel.", ) async def clear_chat_history(self, interaction: discord.Interaction): channel_id = interaction.channel_id if channel_id in _teto_conversations: del _teto_conversations[channel_id] await interaction.response.send_message( "Chat history cleared for this channel desu~", ephemeral=True ) else: await interaction.response.send_message( "No chat history found for this channel desu~", ephemeral=True ) @ame_group.command( name="toggle_shell_command", description="Toggles Ame-chan's ability to run shell commands.", ) async def toggle_shell_command(self, interaction: discord.Interaction): self._allow_shell_commands = not self._allow_shell_commands status = "enabled" if self._allow_shell_commands else "disabled" await interaction.response.send_message( f"Ame-chan's shell command ability is now {status} desu~", ephemeral=True ) @ame_group.command( name="toggle_web_search", description="Toggles Ame-chan's ability to search the web.", ) async def toggle_web_search(self, interaction: discord.Interaction): if not self.tavily_api_key or not self.tavily_client: await interaction.response.send_message( "Web search is not available because the Tavily API key is not configured. Please set the TAVILY_API_KEY environment variable.", ephemeral=True, ) return self._allow_web_search = not self._allow_web_search status = "enabled" if self._allow_web_search else "disabled" await interaction.response.send_message( f"Ame-chan's web search ability is now {status} desu~", ephemeral=True ) @ame_group.command( name="web_search", description="Search the web using Tavily API." ) @app_commands.describe(query="The search query to look up online.") async def web_search_command(self, interaction: discord.Interaction, query: str): if not self.tavily_api_key or not self.tavily_client: await interaction.response.send_message( "Web search is not available because the Tavily API key is not configured. Please set the TAVILY_API_KEY environment variable.", ephemeral=True, ) return await interaction.response.defer(thinking=True) try: search_results = await self.web_search(query=query) if "error" in search_results: await interaction.followup.send( f"โŒ Error: Web search failed - {search_results['error']}" ) return # Format the results in a readable way embed = discord.Embed( title=f"๐Ÿ” Web Search Results for: {query}", description=search_results.get("answer", "No summary available."), color=discord.Color.blue(), ) for i, result in enumerate( search_results.get("results", [])[:5], 1 ): # Limit to top 5 results embed.add_field( name=f"Result {i}: {result['title']}", value=f"[Link]({result['url']})\n{result['content'][:200]}...", inline=False, ) embed.set_footer( text=f"Search depth: {search_results['search_depth']} | Results: {search_results['count']}" ) await interaction.followup.send(embed=embed) except Exception as e: await interaction.followup.send(f"โŒ Error performing web search: {str(e)}") @model_subgroup.command( name="get", description="Gets the current AI model for Ame-chan." ) async def get_ai_model(self, interaction: discord.Interaction): await interaction.response.send_message( f"Ame-chan's current AI model is: {self._ai_model} desu~", ephemeral=True ) # Context menu command must be defined at module level @app_commands.context_menu(name="Teto AI Reply") async def teto_context_menu_ai_reply( interaction: discord.Interaction, message: discord.Message ): """Replies to the selected message as a Teto AI.""" if not message.content: await interaction.response.send_message( "The selected message has no text content to reply to! >.<", ephemeral=True ) return await interaction.response.defer(ephemeral=True) channel = interaction.channel convo_key = channel.id convo = _teto_conversations.get(convo_key, []) if message.content: convo.append({"role": "user", "content": message.content}) try: # Get the TetoCog instance from the bot cog = interaction.client.get_cog("TetoCog") if cog is None: await interaction.followup.send( "TetoCog is not loaded, cannot reply.", ephemeral=True ) return ai_reply = await cog._teto_reply_ai_with_messages(messages=convo) ai_reply = strip_think_blocks(ai_reply) await message.reply(ai_reply) await interaction.followup.send("Teto AI replied desu~", ephemeral=True) # Store the AI's textual response in the conversation history convo.append( {"role": "assistant", "content": ai_reply} ) # ai_reply is already the text _teto_conversations[convo_key] = convo[-10:] except Exception as e: await interaction.followup.send( f"Teto AI reply failed: {e} desu~", ephemeral=True ) async def setup(bot: commands.Bot): cog = TetoCog(bot) await bot.add_cog(cog) # bot.tree.add_command(cog.ame_group) # No longer needed if groups are class variables; discovery should handle it. # Ensure the context menu is still added if it's not part of the cog's auto-discovery bot.tree.add_command( teto_context_menu_ai_reply ) # This is a module-level command, so it needs to be added. print("TetoCog loaded! desu~")