aa
This commit is contained in:
parent
f341f7e351
commit
45e65c6de7
@ -7,6 +7,8 @@ import shutil
|
|||||||
import argparse
|
import argparse
|
||||||
from tqdm import tqdm
|
from tqdm import tqdm
|
||||||
import time
|
import time
|
||||||
|
import subprocess
|
||||||
|
import huggingface_hub
|
||||||
|
|
||||||
# Illustrious XL model information
|
# Illustrious XL model information
|
||||||
MODEL_ID = 795765
|
MODEL_ID = 795765
|
||||||
@ -15,37 +17,170 @@ MODEL_VERSION = 1 # Version 1.0
|
|||||||
MODEL_URL = "https://civitai.com/api/download/models/795765"
|
MODEL_URL = "https://civitai.com/api/download/models/795765"
|
||||||
MODEL_INFO_URL = f"https://civitai.com/api/v1/models/{MODEL_ID}"
|
MODEL_INFO_URL = f"https://civitai.com/api/v1/models/{MODEL_ID}"
|
||||||
|
|
||||||
|
# Base SDXL model from HuggingFace (we'll use this as a base and replace the unet)
|
||||||
|
SDXL_BASE_MODEL = "stabilityai/stable-diffusion-xl-base-1.0"
|
||||||
|
|
||||||
def download_file(url, destination, filename=None):
|
def download_file(url, destination, filename=None):
|
||||||
"""Download a file with progress bar"""
|
"""Download a file with progress bar"""
|
||||||
if filename is None:
|
if filename is None:
|
||||||
local_filename = os.path.join(destination, url.split('/')[-1])
|
local_filename = os.path.join(destination, url.split('/')[-1])
|
||||||
else:
|
else:
|
||||||
local_filename = os.path.join(destination, filename)
|
local_filename = os.path.join(destination, filename)
|
||||||
|
|
||||||
with requests.get(url, stream=True) as r:
|
with requests.get(url, stream=True) as r:
|
||||||
r.raise_for_status()
|
r.raise_for_status()
|
||||||
total_size = int(r.headers.get('content-length', 0))
|
total_size = int(r.headers.get('content-length', 0))
|
||||||
|
|
||||||
# Create directory if it doesn't exist
|
# Create directory if it doesn't exist
|
||||||
os.makedirs(os.path.dirname(local_filename), exist_ok=True)
|
os.makedirs(os.path.dirname(local_filename), exist_ok=True)
|
||||||
|
|
||||||
with open(local_filename, 'wb') as f:
|
with open(local_filename, 'wb') as f:
|
||||||
with tqdm(total=total_size, unit='B', unit_scale=True, desc=f"Downloading {os.path.basename(local_filename)}") as pbar:
|
with tqdm(total=total_size, unit='B', unit_scale=True, desc=f"Downloading {os.path.basename(local_filename)}") as pbar:
|
||||||
for chunk in r.iter_content(chunk_size=8192):
|
for chunk in r.iter_content(chunk_size=8192):
|
||||||
if chunk:
|
if chunk:
|
||||||
f.write(chunk)
|
f.write(chunk)
|
||||||
pbar.update(len(chunk))
|
pbar.update(len(chunk))
|
||||||
|
|
||||||
return local_filename
|
return local_filename
|
||||||
|
|
||||||
def create_model_index(model_dir):
|
def download_from_huggingface(repo_id, local_dir, component=None):
|
||||||
"""Create a model_index.json file for the diffusers library"""
|
"""Download a model from HuggingFace"""
|
||||||
model_index = {
|
try:
|
||||||
"_class_name": "StableDiffusionXLPipeline",
|
# Use huggingface_hub to download the model
|
||||||
"_diffusers_version": "0.21.4",
|
if component:
|
||||||
"force_zeros_for_empty_prompt": True,
|
print(f"Downloading {component} from {repo_id}...")
|
||||||
"scheduler": [
|
huggingface_hub.snapshot_download(
|
||||||
{
|
repo_id=repo_id,
|
||||||
|
local_dir=local_dir,
|
||||||
|
local_dir_use_symlinks=False,
|
||||||
|
allow_patterns=f"{component}/*"
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
print(f"Downloading full model from {repo_id}...")
|
||||||
|
huggingface_hub.snapshot_download(
|
||||||
|
repo_id=repo_id,
|
||||||
|
local_dir=local_dir,
|
||||||
|
local_dir_use_symlinks=False
|
||||||
|
)
|
||||||
|
return True
|
||||||
|
except Exception as e:
|
||||||
|
print(f"Error downloading from HuggingFace: {e}")
|
||||||
|
return False
|
||||||
|
|
||||||
|
def download_illustrious_xl():
|
||||||
|
"""Download and set up the Illustrious XL model"""
|
||||||
|
# Set up directories
|
||||||
|
script_dir = os.path.dirname(os.path.abspath(__file__))
|
||||||
|
models_dir = os.path.join(script_dir, "models")
|
||||||
|
illustrious_dir = os.path.join(models_dir, "illustrious_xl")
|
||||||
|
temp_dir = os.path.join(models_dir, "temp")
|
||||||
|
|
||||||
|
# Create directories if they don't exist
|
||||||
|
os.makedirs(models_dir, exist_ok=True)
|
||||||
|
os.makedirs(temp_dir, exist_ok=True)
|
||||||
|
|
||||||
|
# Check if model already exists
|
||||||
|
if os.path.exists(os.path.join(illustrious_dir, "unet", "diffusion_pytorch_model.safetensors")) and \
|
||||||
|
os.path.getsize(os.path.join(illustrious_dir, "unet", "diffusion_pytorch_model.safetensors")) > 100000000: # Check if file is larger than 100MB
|
||||||
|
print(f"⚠️ {MODEL_NAME} model already exists at {illustrious_dir}")
|
||||||
|
choice = input("Do you want to re-download and reinstall the model? (y/n): ")
|
||||||
|
if choice.lower() != 'y':
|
||||||
|
print("Download cancelled.")
|
||||||
|
return
|
||||||
|
|
||||||
|
# Remove existing model
|
||||||
|
print(f"Removing existing {MODEL_NAME} model...")
|
||||||
|
shutil.rmtree(illustrious_dir, ignore_errors=True)
|
||||||
|
|
||||||
|
# Create illustrious directory
|
||||||
|
os.makedirs(illustrious_dir, exist_ok=True)
|
||||||
|
|
||||||
|
# Get model info from Civitai API
|
||||||
|
print(f"Fetching information about {MODEL_NAME} from Civitai...")
|
||||||
|
try:
|
||||||
|
response = requests.get(MODEL_INFO_URL)
|
||||||
|
response.raise_for_status()
|
||||||
|
model_info = response.json()
|
||||||
|
|
||||||
|
# Save model info for reference
|
||||||
|
with open(os.path.join(illustrious_dir, "model_info.json"), "w") as f:
|
||||||
|
json.dump(model_info, f, indent=2)
|
||||||
|
|
||||||
|
print(f"Model: {model_info['name']} by {model_info['creator']['username']}")
|
||||||
|
if 'description' in model_info:
|
||||||
|
print(f"Description: {model_info['description'][:100]}...")
|
||||||
|
|
||||||
|
except Exception as e:
|
||||||
|
print(f"⚠️ Failed to fetch model info: {e}")
|
||||||
|
print("Continuing with download anyway...")
|
||||||
|
|
||||||
|
# First, download the base SDXL model from HuggingFace
|
||||||
|
print(f"Step 1: Downloading base SDXL model from HuggingFace...")
|
||||||
|
print("This will download the VAE, text encoders, and tokenizers needed for the model.")
|
||||||
|
print("This may take a while (several GB of data)...")
|
||||||
|
|
||||||
|
# Download each component separately to avoid downloading the full model
|
||||||
|
components = ["vae", "text_encoder", "text_encoder_2", "tokenizer", "tokenizer_2", "scheduler"]
|
||||||
|
for component in components:
|
||||||
|
success = download_from_huggingface(SDXL_BASE_MODEL, illustrious_dir, component)
|
||||||
|
if not success:
|
||||||
|
print(f"Failed to download {component} from HuggingFace.")
|
||||||
|
print("Trying alternative method...")
|
||||||
|
|
||||||
|
# Try using diffusers to download the model
|
||||||
|
try:
|
||||||
|
print(f"Installing diffusers if not already installed...")
|
||||||
|
subprocess.check_call([sys.executable, "-m", "pip", "install", "diffusers"])
|
||||||
|
|
||||||
|
# Use Python to download the model components
|
||||||
|
from diffusers import StableDiffusionXLPipeline
|
||||||
|
print(f"Downloading {component} using diffusers...")
|
||||||
|
|
||||||
|
# Create a temporary directory for the download
|
||||||
|
temp_model_dir = os.path.join(temp_dir, "sdxl_base")
|
||||||
|
os.makedirs(temp_model_dir, exist_ok=True)
|
||||||
|
|
||||||
|
# Download only the specified components
|
||||||
|
StableDiffusionXLPipeline.from_pretrained(
|
||||||
|
SDXL_BASE_MODEL,
|
||||||
|
torch_dtype="float16",
|
||||||
|
variant="fp16",
|
||||||
|
use_safetensors=True,
|
||||||
|
cache_dir=temp_model_dir
|
||||||
|
)
|
||||||
|
|
||||||
|
# Copy the component to the illustrious directory
|
||||||
|
component_dir = os.path.join(temp_model_dir, component)
|
||||||
|
if os.path.exists(component_dir):
|
||||||
|
shutil.copytree(component_dir, os.path.join(illustrious_dir, component), dirs_exist_ok=True)
|
||||||
|
print(f"Successfully copied {component} to {illustrious_dir}")
|
||||||
|
else:
|
||||||
|
print(f"Could not find {component} in downloaded model.")
|
||||||
|
|
||||||
|
except Exception as e:
|
||||||
|
print(f"Error using diffusers to download {component}: {e}")
|
||||||
|
print("You may need to manually download the SDXL base model and copy the components.")
|
||||||
|
|
||||||
|
# Now download the Illustrious XL model from Civitai
|
||||||
|
print(f"\nStep 2: Downloading {MODEL_NAME} from Civitai...")
|
||||||
|
try:
|
||||||
|
# Download to temp directory
|
||||||
|
model_file = download_file(MODEL_URL, temp_dir, "illustrious_xl.safetensors")
|
||||||
|
|
||||||
|
# Create the unet directory if it doesn't exist
|
||||||
|
os.makedirs(os.path.join(illustrious_dir, "unet"), exist_ok=True)
|
||||||
|
|
||||||
|
# Move the model file to the unet directory
|
||||||
|
print(f"Moving {MODEL_NAME} model to the unet directory...")
|
||||||
|
shutil.move(model_file, os.path.join(illustrious_dir, "unet", "diffusion_pytorch_model.safetensors"))
|
||||||
|
|
||||||
|
# Create a model_index.json file
|
||||||
|
print("Creating model_index.json file...")
|
||||||
|
model_index = {
|
||||||
|
"_class_name": "StableDiffusionXLPipeline",
|
||||||
|
"_diffusers_version": "0.21.4",
|
||||||
|
"force_zeros_for_empty_prompt": True,
|
||||||
|
"scheduler": {
|
||||||
"_class_name": "DPMSolverMultistepScheduler",
|
"_class_name": "DPMSolverMultistepScheduler",
|
||||||
"_diffusers_version": "0.21.4",
|
"_diffusers_version": "0.21.4",
|
||||||
"beta_end": 0.012,
|
"beta_end": 0.012,
|
||||||
@ -59,143 +194,85 @@ def create_model_index(model_dir):
|
|||||||
"timestep_spacing": "leading",
|
"timestep_spacing": "leading",
|
||||||
"trained_betas": None,
|
"trained_betas": None,
|
||||||
"use_karras_sigmas": True
|
"use_karras_sigmas": True
|
||||||
}
|
},
|
||||||
],
|
"text_encoder": [
|
||||||
"text_encoder": [
|
{
|
||||||
{
|
"_class_name": "CLIPTextModel",
|
||||||
"_class_name": "CLIPTextModel",
|
"_diffusers_version": "0.21.4"
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"_class_name": "CLIPTextModelWithProjection",
|
||||||
|
"_diffusers_version": "0.21.4"
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"tokenizer": [
|
||||||
|
{
|
||||||
|
"_class_name": "CLIPTokenizer",
|
||||||
|
"_diffusers_version": "0.21.4"
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"_class_name": "CLIPTokenizer",
|
||||||
|
"_diffusers_version": "0.21.4"
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"unet": {
|
||||||
|
"_class_name": "UNet2DConditionModel",
|
||||||
"_diffusers_version": "0.21.4"
|
"_diffusers_version": "0.21.4"
|
||||||
},
|
},
|
||||||
{
|
"vae": {
|
||||||
"_class_name": "CLIPTextModelWithProjection",
|
"_class_name": "AutoencoderKL",
|
||||||
"_diffusers_version": "0.21.4"
|
"_diffusers_version": "0.21.4"
|
||||||
}
|
}
|
||||||
],
|
|
||||||
"tokenizer": [
|
|
||||||
{
|
|
||||||
"_class_name": "CLIPTokenizer",
|
|
||||||
"_diffusers_version": "0.21.4"
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"_class_name": "CLIPTokenizer",
|
|
||||||
"_diffusers_version": "0.21.4"
|
|
||||||
}
|
|
||||||
],
|
|
||||||
"unet": {
|
|
||||||
"_class_name": "UNet2DConditionModel",
|
|
||||||
"_diffusers_version": "0.21.4"
|
|
||||||
},
|
|
||||||
"vae": {
|
|
||||||
"_class_name": "AutoencoderKL",
|
|
||||||
"_diffusers_version": "0.21.4"
|
|
||||||
}
|
}
|
||||||
}
|
|
||||||
|
|
||||||
with open(os.path.join(model_dir, "model_index.json"), "w") as f:
|
|
||||||
json.dump(model_index, f, indent=2)
|
|
||||||
|
|
||||||
def download_illustrious_xl():
|
with open(os.path.join(illustrious_dir, "model_index.json"), "w") as f:
|
||||||
"""Download and set up the Illustrious XL model"""
|
json.dump(model_index, f, indent=2)
|
||||||
# Set up directories
|
|
||||||
script_dir = os.path.dirname(os.path.abspath(__file__))
|
|
||||||
models_dir = os.path.join(script_dir, "models")
|
|
||||||
illustrious_dir = os.path.join(models_dir, "illustrious_xl")
|
|
||||||
temp_dir = os.path.join(models_dir, "temp")
|
|
||||||
|
|
||||||
# Create directories if they don't exist
|
|
||||||
os.makedirs(models_dir, exist_ok=True)
|
|
||||||
os.makedirs(temp_dir, exist_ok=True)
|
|
||||||
|
|
||||||
# Check if model already exists
|
|
||||||
if os.path.exists(os.path.join(illustrious_dir, "model_index.json")):
|
|
||||||
print(f"⚠️ {MODEL_NAME} model already exists at {illustrious_dir}")
|
|
||||||
choice = input("Do you want to re-download and reinstall the model? (y/n): ")
|
|
||||||
if choice.lower() != 'y':
|
|
||||||
print("Download cancelled.")
|
|
||||||
return
|
|
||||||
|
|
||||||
# Remove existing model
|
|
||||||
print(f"Removing existing {MODEL_NAME} model...")
|
|
||||||
shutil.rmtree(illustrious_dir, ignore_errors=True)
|
|
||||||
|
|
||||||
# Create illustrious directory
|
|
||||||
os.makedirs(illustrious_dir, exist_ok=True)
|
|
||||||
|
|
||||||
# Get model info from Civitai API
|
|
||||||
print(f"Fetching information about {MODEL_NAME} from Civitai...")
|
|
||||||
try:
|
|
||||||
response = requests.get(MODEL_INFO_URL)
|
|
||||||
response.raise_for_status()
|
|
||||||
model_info = response.json()
|
|
||||||
|
|
||||||
# Save model info for reference
|
|
||||||
with open(os.path.join(illustrious_dir, "model_info.json"), "w") as f:
|
|
||||||
json.dump(model_info, f, indent=2)
|
|
||||||
|
|
||||||
print(f"Model: {model_info['name']} by {model_info['creator']['username']}")
|
|
||||||
print(f"Description: {model_info['description'][:100]}...")
|
|
||||||
|
|
||||||
except Exception as e:
|
|
||||||
print(f"⚠️ Failed to fetch model info: {e}")
|
|
||||||
print("Continuing with download anyway...")
|
|
||||||
|
|
||||||
# Download the model
|
|
||||||
print(f"Downloading {MODEL_NAME} from Civitai...")
|
|
||||||
try:
|
|
||||||
# Download to temp directory
|
|
||||||
model_file = download_file(MODEL_URL, temp_dir, "illustrious_xl.safetensors")
|
|
||||||
|
|
||||||
# Move the file to the model directory
|
|
||||||
print(f"Setting up {MODEL_NAME} model...")
|
|
||||||
|
|
||||||
# Create the necessary directory structure for diffusers
|
|
||||||
os.makedirs(os.path.join(illustrious_dir, "unet"), exist_ok=True)
|
|
||||||
os.makedirs(os.path.join(illustrious_dir, "vae"), exist_ok=True)
|
|
||||||
os.makedirs(os.path.join(illustrious_dir, "text_encoder"), exist_ok=True)
|
|
||||||
os.makedirs(os.path.join(illustrious_dir, "text_encoder_2"), exist_ok=True)
|
|
||||||
os.makedirs(os.path.join(illustrious_dir, "tokenizer"), exist_ok=True)
|
|
||||||
os.makedirs(os.path.join(illustrious_dir, "tokenizer_2"), exist_ok=True)
|
|
||||||
|
|
||||||
# Move the model file to the unet directory
|
|
||||||
shutil.move(model_file, os.path.join(illustrious_dir, "unet", "diffusion_pytorch_model.safetensors"))
|
|
||||||
|
|
||||||
# Create a model_index.json file
|
|
||||||
create_model_index(illustrious_dir)
|
|
||||||
|
|
||||||
# Create a README.md file with information about the model
|
# Create a README.md file with information about the model
|
||||||
with open(os.path.join(illustrious_dir, "README.md"), "w") as f:
|
with open(os.path.join(illustrious_dir, "README.md"), "w") as f:
|
||||||
f.write(f"# {MODEL_NAME}\n\n")
|
f.write(f"# {MODEL_NAME}\n\n")
|
||||||
f.write(f"Downloaded from Civitai: https://civitai.com/models/{MODEL_ID}\n\n")
|
f.write(f"Downloaded from Civitai: https://civitai.com/models/{MODEL_ID}\n\n")
|
||||||
f.write("This model requires the diffusers library to use.\n")
|
f.write("This model requires the diffusers library to use.\n")
|
||||||
f.write("Use the /generate command in the Discord bot to generate images with this model.\n")
|
f.write("Use the /generate command in the Discord bot to generate images with this model.\n")
|
||||||
|
|
||||||
print(f"✅ {MODEL_NAME} model has been downloaded and set up successfully!")
|
# Check if the model file is large enough (should be several GB)
|
||||||
|
unet_file = os.path.join(illustrious_dir, "unet", "diffusion_pytorch_model.safetensors")
|
||||||
|
if os.path.exists(unet_file):
|
||||||
|
file_size_gb = os.path.getsize(unet_file) / (1024 * 1024 * 1024)
|
||||||
|
print(f"Model file size: {file_size_gb:.2f} GB")
|
||||||
|
|
||||||
|
if file_size_gb < 1.0:
|
||||||
|
print(f"⚠️ Warning: Model file seems too small ({file_size_gb:.2f} GB). It may not be complete.")
|
||||||
|
print("The download might have been interrupted or the model might not be the full version.")
|
||||||
|
print("You may want to try downloading again with the --force flag.")
|
||||||
|
|
||||||
|
print(f"\n✅ {MODEL_NAME} model has been downloaded and set up successfully!")
|
||||||
print(f"Model location: {illustrious_dir}")
|
print(f"Model location: {illustrious_dir}")
|
||||||
print("You can now use the model with the /generate command in the Discord bot.")
|
print("You can now use the model with the /generate command in the Discord bot.")
|
||||||
|
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
print(f"❌ Error downloading or setting up the model: {e}")
|
print(f"❌ Error downloading or setting up the model: {e}")
|
||||||
import traceback
|
import traceback
|
||||||
traceback.print_exc()
|
traceback.print_exc()
|
||||||
|
|
||||||
# Clean up
|
# Clean up
|
||||||
print("Cleaning up...")
|
print("Cleaning up...")
|
||||||
shutil.rmtree(illustrious_dir, ignore_errors=True)
|
shutil.rmtree(illustrious_dir, ignore_errors=True)
|
||||||
shutil.rmtree(temp_dir, ignore_errors=True)
|
shutil.rmtree(temp_dir, ignore_errors=True)
|
||||||
|
|
||||||
print("Download failed. Please try again later.")
|
print("Download failed. Please try again later.")
|
||||||
return False
|
return False
|
||||||
|
|
||||||
# Clean up temp directory
|
# Clean up temp directory
|
||||||
shutil.rmtree(temp_dir, ignore_errors=True)
|
shutil.rmtree(temp_dir, ignore_errors=True)
|
||||||
|
|
||||||
return True
|
return True
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
parser = argparse.ArgumentParser(description=f"Download and set up the {MODEL_NAME} model from Civitai")
|
parser = argparse.ArgumentParser(description=f"Download and set up the {MODEL_NAME} model from Civitai")
|
||||||
parser.add_argument("--force", action="store_true", help="Force download even if the model already exists")
|
parser.add_argument("--force", action="store_true", help="Force download even if the model already exists")
|
||||||
args = parser.parse_args()
|
args = parser.parse_args()
|
||||||
|
|
||||||
if args.force:
|
if args.force:
|
||||||
# Remove existing model if it exists
|
# Remove existing model if it exists
|
||||||
script_dir = os.path.dirname(os.path.abspath(__file__))
|
script_dir = os.path.dirname(os.path.abspath(__file__))
|
||||||
@ -203,5 +280,5 @@ if __name__ == "__main__":
|
|||||||
if os.path.exists(illustrious_dir):
|
if os.path.exists(illustrious_dir):
|
||||||
print(f"Removing existing {MODEL_NAME} model...")
|
print(f"Removing existing {MODEL_NAME} model...")
|
||||||
shutil.rmtree(illustrious_dir, ignore_errors=True)
|
shutil.rmtree(illustrious_dir, ignore_errors=True)
|
||||||
|
|
||||||
download_illustrious_xl()
|
download_illustrious_xl()
|
||||||
|
111
manual_download_instructions.md
Normal file
111
manual_download_instructions.md
Normal file
@ -0,0 +1,111 @@
|
|||||||
|
# Manual Download Instructions for Illustrious XL
|
||||||
|
|
||||||
|
If the automatic download script fails, you can manually download and set up the Illustrious XL model by following these steps:
|
||||||
|
|
||||||
|
## Step 1: Download the Model Files
|
||||||
|
|
||||||
|
1. Download the Illustrious XL model from Civitai:
|
||||||
|
- Go to: https://civitai.com/models/795765/illustrious-xl
|
||||||
|
- Click the "Download" button to download the model file
|
||||||
|
- Save the file as `illustrious_xl.safetensors`
|
||||||
|
|
||||||
|
2. Download the base SDXL model components from Hugging Face:
|
||||||
|
- Go to: https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0
|
||||||
|
- Download the following files/folders:
|
||||||
|
- `vae` folder
|
||||||
|
- `text_encoder` folder
|
||||||
|
- `text_encoder_2` folder
|
||||||
|
- `tokenizer` folder
|
||||||
|
- `tokenizer_2` folder
|
||||||
|
- `scheduler` folder
|
||||||
|
|
||||||
|
## Step 2: Set Up the Directory Structure
|
||||||
|
|
||||||
|
1. Create the following directory structure in your Discord bot folder:
|
||||||
|
```
|
||||||
|
discordbot/
|
||||||
|
└── models/
|
||||||
|
└── illustrious_xl/
|
||||||
|
├── unet/
|
||||||
|
├── vae/
|
||||||
|
├── text_encoder/
|
||||||
|
├── text_encoder_2/
|
||||||
|
├── tokenizer/
|
||||||
|
└── tokenizer_2/
|
||||||
|
```
|
||||||
|
|
||||||
|
2. Place the downloaded files in the appropriate directories:
|
||||||
|
- Move `illustrious_xl.safetensors` to `discordbot/models/illustrious_xl/unet/` and rename it to `diffusion_pytorch_model.safetensors`
|
||||||
|
- Copy the contents of the downloaded `vae` folder to `discordbot/models/illustrious_xl/vae/`
|
||||||
|
- Copy the contents of the downloaded `text_encoder` folder to `discordbot/models/illustrious_xl/text_encoder/`
|
||||||
|
- Copy the contents of the downloaded `text_encoder_2` folder to `discordbot/models/illustrious_xl/text_encoder_2/`
|
||||||
|
- Copy the contents of the downloaded `tokenizer` folder to `discordbot/models/illustrious_xl/tokenizer/`
|
||||||
|
- Copy the contents of the downloaded `tokenizer_2` folder to `discordbot/models/illustrious_xl/tokenizer_2/`
|
||||||
|
|
||||||
|
## Step 3: Create the Model Index File
|
||||||
|
|
||||||
|
Create a file named `model_index.json` in the `discordbot/models/illustrious_xl/` directory with the following content:
|
||||||
|
|
||||||
|
```json
|
||||||
|
{
|
||||||
|
"_class_name": "StableDiffusionXLPipeline",
|
||||||
|
"_diffusers_version": "0.21.4",
|
||||||
|
"force_zeros_for_empty_prompt": true,
|
||||||
|
"scheduler": {
|
||||||
|
"_class_name": "DPMSolverMultistepScheduler",
|
||||||
|
"_diffusers_version": "0.21.4",
|
||||||
|
"beta_end": 0.012,
|
||||||
|
"beta_schedule": "scaled_linear",
|
||||||
|
"beta_start": 0.00085,
|
||||||
|
"num_train_timesteps": 1000,
|
||||||
|
"prediction_type": "epsilon",
|
||||||
|
"solver_order": 2,
|
||||||
|
"solver_type": "midpoint",
|
||||||
|
"thresholding": false,
|
||||||
|
"timestep_spacing": "leading",
|
||||||
|
"trained_betas": null,
|
||||||
|
"use_karras_sigmas": true
|
||||||
|
},
|
||||||
|
"text_encoder": [
|
||||||
|
{
|
||||||
|
"_class_name": "CLIPTextModel",
|
||||||
|
"_diffusers_version": "0.21.4"
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"_class_name": "CLIPTextModelWithProjection",
|
||||||
|
"_diffusers_version": "0.21.4"
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"tokenizer": [
|
||||||
|
{
|
||||||
|
"_class_name": "CLIPTokenizer",
|
||||||
|
"_diffusers_version": "0.21.4"
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"_class_name": "CLIPTokenizer",
|
||||||
|
"_diffusers_version": "0.21.4"
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"unet": {
|
||||||
|
"_class_name": "UNet2DConditionModel",
|
||||||
|
"_diffusers_version": "0.21.4"
|
||||||
|
},
|
||||||
|
"vae": {
|
||||||
|
"_class_name": "AutoencoderKL",
|
||||||
|
"_diffusers_version": "0.21.4"
|
||||||
|
}
|
||||||
|
}
|
||||||
|
```
|
||||||
|
|
||||||
|
## Step 4: Verify the Installation
|
||||||
|
|
||||||
|
1. Check that the directory structure is correct and all files are in place
|
||||||
|
2. Make sure the `diffusion_pytorch_model.safetensors` file in the `unet` directory is large (should be several GB)
|
||||||
|
3. Restart your Discord bot
|
||||||
|
4. Use the `/generate` command to test if the model works correctly
|
||||||
|
|
||||||
|
## Troubleshooting
|
||||||
|
|
||||||
|
- If you get errors about missing files, make sure all the required components are downloaded and placed in the correct directories
|
||||||
|
- If you get CUDA out-of-memory errors, try reducing the image dimensions (e.g., 768x768 instead of 1024x1024)
|
||||||
|
- If the model is not showing up in the `/sd_models` command, make sure the directory structure and file names are exactly as specified above
|
@ -36,3 +36,4 @@ accelerate
|
|||||||
tqdm
|
tqdm
|
||||||
safetensors
|
safetensors
|
||||||
xformers
|
xformers
|
||||||
|
huggingface_hub
|
||||||
|
Loading…
x
Reference in New Issue
Block a user